
Kubernetes
Monitoring
Guide

Table of Contents

01 About This Guide 5

02 Intro to Kubernetes Monitoring 6
Why is monitoring Kubernetes hard? .. 6

Kubernetes increases infrastructure complexity .. 6
Microservices architecture .. 6
Cloud-native explosion and scale requirements ... 7
It’s hard to see what’s inside containers .. 7

Best practices for alerting on Kubernetes ... 8
General alerting basics .. 8

Use cases for Kubernetes monitoring .. 9
Cluster Administrator: Monitoring Kubernetes clusters and nodes 9
DevOps: Monitoring Kubernetes applications ... 9
Monitoring Kubernetes deployments and pods .. 10

Kubernetes monitoring tools ... 10
cAdvisor ... 11
Kubernetes metrics server ... 11
Kubernetes Dashboard ..12
Kubernetes kube-state-metrics ..12
Kubernetes liveness and readiness probes ...13
Prometheus for Kubernetes monitoring ...14
Sysdig Monitor for Kubernetes ...14

Lessons learned ...15

Kubernetes Monitoring Guide 2

03 Monitoring Kubernetes with Golden Signals 16
Golden Signals, a standard for Kubernetes application monitoring16

Golden Signals metric: Latency explained ...17
Golden Signals metric: Errors explained ...18
Golden Signals metric: Traffic / connections explained19
Golden Signals metric: Saturation explained ..19
Golden Signals vs. RED method vs. USE method in Kubernetes 20

Golden Signal Metrics Instrumentation in Kubernetes ...21
Instrumenting code with Prometheus metrics / custom metrics21
Sysdig eBPF system call visibility (no instrumentation) ...21

A practical example of Golden Signals in Kubernetes .. 22
Alerting on application layer metrics ... 29
Caveats and gotchas of Golden Signals in Kubernetes ... 30
Lessons learned .. 30

04 Monitoring Kubernetes Infrastructure and Core Components
31

Monitoring Kubernetes Infrastructure ..31
Alerting on the host or Kubernetes node layer ...31

Control Plane ... 36
Monitoring Kubernetes control plane in Sysdig Monitor 36
How to monitor the Kubernetes API server .. 37
How to monitor Kubelet ... 45
How to monitor Controller Manager .. 56
How to monitor etcd .. 62

Alerting on the Kubernetes control plane ..71
Is Kubernetes etcd running? ..71
Is the Kubernetes API server running? ... 72
Is the latency of Kubelet too high for the start of the pods? 72

Lessons learned .. 73

Kubernetes Monitoring Guide 3

05 Monitoring Kubernetes Workloads 74
Monitoring services running on Kubernetes ... 74

Kubernetes workloads hierarchy .. 75
Alerting on services running on Kubernetes ... 77

Understanding Kubernetes limits and requests by example 79
Resources .. 80
Namespace quotas .. 80
Explaining pod requests and limits ...81
Choosing pragmatic requests and limits ... 87
Reducing wasted spending .. 89
Cost monitoring and optimization ... 90

Lessons learned ...91
How to troubleshoot Kubernetes OOM and CPU Throttle ... 92

Kubernetes OOM problems .. 92
OOM kill due to container limit reached .. 92
Kubernetes OOM kill due to limit overcommit ... 94
CPU throttling due to CPU limit ... 94
Troubleshooting OOM Kill and CPU Throttling with Sysdig Monitor 96

Lessons learned .. 98

06 Conclusion 99

Kubernetes Monitoring Guide 4

01  

About This Guide
With over 30,000 stars on GitHub, over 400 contributors, and an ecosystem that includes Google,
Red Hat, Intel, and more, Kubernetes has taken the container ecosystem by storm. It’s with good
reason, too; Kubernetes acts as the brain for your distributed container deployment. It’s designed to
manage service-oriented applications using containers distributed across clusters of hosts. Kubernetes
provides mechanisms for application deployment, service discovery, scheduling, updating,
maintenance, and scaling. But what about monitoring Kubernetes environments?

While Kubernetes has the potential to dramatically simplify the act of deploying your application in
containers – and across clouds – it also adds a new set of complexities for your day-to-day tasks of
managing application performance, gaining visibility into services, and your typical monitoring >
alerting > troubleshooting workflow.

New layers of infrastructure complexity are appearing in the hopes of simplifying and automating
application deployments including dynamic provisioning via IaaS, automated configuration with
configuration management tools, and lately, orchestration platforms like Kubernetes, which sit between
your bare metal or virtual infrastructure and the services that empower your applications.

In addition to increased infrastructure complexity, applications are now being designed for
microservices, where an order of magnitude more, multiple components are communicating with
each other. Each service can be distributed across multiple instances and containers move across your
infrastructure as needed. We used to know how many instances we had of each service component
and where they were located, but that’s no longer the case. How does this affect Kubernetes
monitoring methodology and tooling? As described in Site Reliability Engineering – How Google
Runs Production Systems, “we need monitoring systems that allow us to alert for high-level service
objectives, but retain the granularity to inspect individual components as needed.”

Whether you are a Sysdig customer or not, you will find valuable information in this guide. We have
presented information and best practices that apply broadly to most environments. You will learn:

 • The basics of Kubernetes monitoring
 • How to use Golden Signals

 • How to monitor Kubernetes infrastructure
 • How to monitor Kubernetes workloads

Throughout the guide we will also provide useful alerts that can be used to notify you when something
is not quite right. This guide will help you navigate the complexities of monitoring Kubernetes
workloads and show you detailed steps you can take to make sure you have the visibility you need to
be successful!

Kubernetes Monitoring Guide About This Guide 5

https://landing.google.com/sre/books/
https://landing.google.com/sre/books/

02  

Intro to Kubernetes Monitoring
Monitoring Kubernetes, both the infrastructure platform and the running workloads, is on everyone’s
checklist as we evolve beyond day zero and head into production. Traditional monitoring tools and
processes aren’t adequate, as they don’t provide visibility into dynamic container environments. Given
this, let’s take a look at what tools you can use to monitor Kubernetes and your applications.

Why is monitoring Kubernetes hard?
Legacy monitoring tools, collecting metrics from static targets built for monitoring servers that each
had their own name, and services that didn’t change overnight and worked in the past but won’t work
well today. This is why those tools fail at monitoring Kubernetes:

Kubernetes increases infrastructure complexity
New layers of infrastructure complexity are appearing in the hopes of simplifying application
deployments: dynamic provisioning via IaaS, automated configuration with configuration management
tools, and lately, orchestration platforms like Kubernetes, which sit between your bare metal or virtual
infrastructure and the services that empower your applications. This is why monitoring the Kubernetes
health at the control plane is part of the job.

In addition, Kubernetes has several specific entities with a hierarchy that relates everything. This
hierarchy includes many elements linked together that need to be assimilated by the monitoring
system. There is no way of monitoring Kubernetes without a good way of reflecting the structure of
these objects.

Microservices architecture
In addition to increased infrastructure complexity, new applications are being designed for
microservices, where the number of components communicating with each other has increased by
an order of magnitude. Each service can be distributed across multiple instances, and containers
move across your infrastructure as needed. Monitoring the Kubernetes orchestration state is key to
understanding if Kubernetes is doing its job. Trust, but verify, that all the instances of your service are
up and running.

Kubernetes Monitoring Guide Intro to Kubernetes Monitoring 6

Cloud-native explosion and scale requirements
While we adopt cloud native architectures, the changes that they bring carry away an increased
amount of smaller components. How does this affect Kubernetes monitoring methodology and
tooling? As described on Site Reliability Engineering – How Google Runs Production Systems,
“we need monitoring systems that allow us to alert for high-level service objectives, but retain the
granularity to inspect individual components as needed.”

The number of metrics simply explodes, and traditional monitoring systems just can’t keep up.
While we used to know how many instances we had of each service component and where they
were located, that’s no longer the case. Now, metrics have high cardinality which means they have
much more data to store and analyze. Kubernetes adds multidimensional levels like cluster, node,
namespace, or service so the different aggregations, or perspectives, that need to be controlled can
explode; many labels represent attributes from the logical groups of the microservices, to application
version, API endpoint, specific resources or actions, and more.

The containers don’t last forever. In our latest container usage report, we found that 23% of the
containers live for 10 seconds or less while 72% of them live fewer than five minutes. This creates
a high level of churn. Labels like the container id or the pod name change all the time, so we stop
seeing old ones while we need to deal with the new.

Now, take all of the combinations of metric names and labels together with the actual value and the
timestamp. Over a small period of time, you have thousands of data points, and even in a small size
Kubernetes cluster, this will generate hundreds of thousands of time series. This can be millions for
a medium-sized infrastructure. This is why Kubernetes monitoring tools need to be ready to scale to
hundreds of thousands of metrics.

It’s hard to see what’s inside containers
Containers are ephemeral. Once the container dies, everything inside is gone. You may not SSH to
the container (depending on the container and security policies). Looking at logs, it might be difficult
if you try to get data from older instantiations than the most recent one, and most of the tools you are
accustomed to using for troubleshooting are not installed. Containers are great for operations as we
can package and isolate applications to consistently deploy them everywhere, but at the same time,
this makes them black boxes which are hard to troubleshoot. This is why monitoring tools that provide
granular visibility through system calls tracing give you visibility down to every process, file, or network
connection that happens inside a container to troubleshoot issues faster.

With these considerations in mind, you can now better understand why monitoring Kubernetes is very
different from monitoring servers, VMs, or even cloud instances.

Kubernetes Monitoring Guide Intro to Kubernetes Monitoring 7

https://landing.google.com/sre/book/chapters/practical-alerting.html
https://sysdig.com/blog/2023-cloud-native-security-usage-report/

Best practices for alerting on Kubernetes
Effective alerting is at the bedrock of a monitoring strategy. Naturally, with the shift to orchestrated
container environments and Kubernetes, your alerting strategy will need to evolve as well. This is due
to a few core reasons:

 • New infrastructure layers: Between your services and the host, you have a new layer consisting
of the containers and the container orchestrator. These are new internal services that you need to
monitor, and your alerting system must be aware of them.

 • Microservices architecture: Containers aren’t coupled with nodes like services were before, so
traditional monitoring doesn’t work effectively. There is no static number of service instances
running (think of a canary deployment or auto-scaling setup). It’s fine that a process is being killed
in one node because, chances are, it’s being rescheduled somewhere else in your infrastructure.

 • New scale and aggregation requirements: With services spread across multiple containers,
monitoring system level and service-specific metrics for those, plus all of the new services that
Kubernetes brings in, does your monitoring and alerting system have the ability to ingest all of
these metrics at a large scale? You also need to look at the metrics from different perspectives. If
you automatically tag metrics with the different labels existing in Kubernetes and our monitoring
system understands Kubernetes metadata, you can aggregate or segment metrics as required in
each situation.

 • Lack of visibility: Containers are black boxes. Traditional tools can only check against public
monitoring endpoints. If you want to deeply monitor the service in question, you need to be able
to look at what’s happening inside the containers.

With these issues in mind, let’s go through the best practices for alerting on Kubernetes environments.

General alerting basics
Let’s first define a set of basic rules you should be following when you set up your alerts in order to
improve the efficiency and mental health of your on-call rotation.

 • Alerts should be based on symptoms. If an unexpected value in a metric doesn’t have any
appreciable impact, it shouldn’t be an alert. You can check those values and generate
maintenance tasks, but don’t wake anybody up in the middle of the night!

 • Alerts should be actionable. Triggering an alert when there’s nothing to do about it will only
generate frustration.

 • There are several methodologies, like Chapter 3: Monitoring Kubernetes with Golden Signals,
that allow a standardization of the way you alert, making the dashboards and alerts much easier to
understand.

Kubernetes Monitoring Guide Intro to Kubernetes Monitoring 8

Use cases for Kubernetes monitoring
Now, you might be wondering, why are we doing this after all? A Kubernetes cluster has multiple
components and layers, and across each of them you will find different failure points that you need to
monitor. Those are some typical profiles for Kubernetes monitoring:

 • Cluster administrators: Infrastructure operations teams take care of the cluster’s health. This
includes monitoring the hosts, Kubernetes components, networking components, capacity
planning, and external resources like volumes or load balancers.

 • DevOps: Responsible for the health of applications running in the cluster. This includes
workloads, pods, volume data, and images running. They usually have to monitor application-
related metrics, like Golden Signals or custom business metrics.

This is an oversimplification, as there are plenty of gray areas between these two roles and many times
issues are interconnected. What if a pod without limits is exhausting the memory in a node? What
if an application is giving error messages due to problems in the cluster DNS? Even when there are
specific points of responsibility, collaborating and sharing a monitoring environment can provide a lot
of advantages like saving time and resources.

In addition, saying who is responsible for detecting an issue is more related to the capacity to
understand the symptoms of the problem and not the solution. A problem can appear in the
applications but can be caused by a problem in the infrastructure, and the other way around. The
person that detects the issue is not necessarily the one to fix it.

Cluster Administrator: Monitoring Kubernetes clusters and nodes
By monitoring the cluster, you get an across-the-board view of the overall platform health and capacity.
Specific use cases can be:

 • Cluster resource usage: Is the cluster infrastructure underutilized? Are you over capacity?
 • Project and team chargeback: What is each project or team resource usage?
 • Node availability and health: Are enough nodes available to replicate our applications? Are you

going to run out of resources?

DevOps: Monitoring Kubernetes applications
At the end of the day, your applications are what matter most. What is it that you want to look at here?
This is the part which is similar to what you may be used to:

 • Application availability: Is the application responding?
 • Application health and performance: How many requests do you have? What’s the

responsiveness or latency? Are you having any errors?
 • How healthy are the deployments and services that support your application?

Monitoring using Golden Signals is considered the best practice approach on this. We will cover this
in Chapter 3: Monitoring Kubernetes with Golden Signals.

Kubernetes Monitoring Guide Intro to Kubernetes Monitoring 9

https://sysdig.com/blog/golden-signals-kubernetes/

Monitoring Kubernetes deployments and pods
This is a gray area that is mostly the responsibility of DevOps teams, but sometimes the cluster admins
can have a key role in finding the source of the problem.

Looking at the Kubernetes constructs like namespaces, deployments, ReplicaSets, or DaemonSets, we
can understand whether our applications have been properly deployed. For example:

 • Missing and failed pods: Are the pods running for each of our applications? How many pods
are dying?

 • Running vs. desired instances: How many instances for each service are actually ready? How
many do you expect to be ready?

 • Pod resource usage against requests and limits: Are CPU and memory requests and limits set?
What is the actual usage against those?

Kubernetes monitoring tools
Like most platforms, Kubernetes has a set of rudimentary tools that allow you to monitor your platform,
including the Kubernetes constructs that ride on top of physical infrastructure. The term “built-in” may
be a little bit of an overstatement. It’s more fair to say that, given the extensible nature of Kubernetes,
it’s possible for your inner tinkerer to add additional components to gain visibility into Kubernetes.
As you will see in the following sections, some of these monitoring components — like Prometheus,
Grafana and kube-state-metrics — are not required anymore while using Sysdig Monitor. These are
included out-of-the-box with Sysdig Monitor. Let’s run through the typical pieces of a Kubernetes
monitoring setup:

 • cAdvisor
 • Kubernetes metrics server
 • Kubernetes Dashboard
 • Kubernetes kube-state-metrics
 • Kubernetes liveness and readiness probes
 • Prometheus with Grafana
 • Sysdig Monitor for Kubernetes

Kubernetes Monitoring Guide Intro to Kubernetes Monitoring 10Kubernetes Monitoring Guide

cAdvisor
cAdvisor is an open source container resource usage collector. It is purposefully built for containers
and supports Docker containers natively. Also, it auto-discovers all containers in the given node and
collects CPU, memory, filesystem, and network usage statistics. However, cAdvisor is limited in a
couple of ways:

 • It only collects basic resource utilization since cAdvisor cannot tell you how your applications are
actually performing, but only if a container has X% CPU utilization (for example).

 • cAdvisor itself doesn’t offer any long-term storage or analysis capabilities.

On Kubernetes, the nodes’ kubelets, the on-machine Kubernetes agent, install cAdvisor to monitor the
resources of the containers inside of each pod. But to go further with this data, you need something
that aggregates data across the entire cluster. The most popular option used to be Heapster, but that
has been deprecated and Kubernetes consumes metrics through the metrics-server. This data then
needs to be pushed to a configurable backend for storage and visualization. Supported backends
include InfluxDB, Google Cloud Monitoring, and a few others. Additionally, you must add a
visualization layer like Grafana to see your data.

Kubernetes metrics server
Starting from Kubernetes 1.8, the resource usage metrics coming from the kubelets and cAdvisor
are available through the Kubernetes metrics server API, the same way Kubernetes API is exposed.
This service doesn’t allow you to store values over time either, and lacks visualization or analytics.
Kubernetes metrics server is used for Kubernetes advanced orchestration, like Horizontal Pod
Autoscaler for autoscaling and Vertical Pod Autoscaler

Kubernetes Monitoring Guide Intro to Kubernetes Monitoring 11Kubernetes Monitoring Guide Intro to Kubernetes Monitoring 11

https://github.com/google/cadvisor
https://github.com/kubernetes-retired/heapster
https://github.com/kubernetes-sigs/metrics-server
https://sysdig.com/blog/kubernetes-autoscaler/
https://sysdig.com/blog/kubernetes-autoscaler/
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler/

Kubernetes Dashboard
The Kubernetes Dashboard provides a simple way to see your environment browsing through your
Kubernetes namespaces and workloads. Kubernetes Dashboard gives you a consistent way to visualize
some of this basic data with only basic CPU / memory data available. You can also manage and take
actions from this dashboard, which has been a security concern on multi-tenant clusters as proper
RBAC privileges need to be set up.

Kubernetes kube-state-metrics
Another component that you definitely want to consider is kube-state-metrics. It’s an add-on service
that runs alongside your Kubernetes metrics-server that polls the Kubernetes API and translates
characteristics about your Kubernetes constructs into metrics. Some questions kube-state-metrics would
answer are:

 • How many replicas did you schedule? And how many are currently available?
 • How many pods are running / stopped / terminated?
 • How many times has this pod restarted?

In general, the model is to take Kubernetes events and convert them to metrics. Kube-state-metrics uses
client-go, the compatibility matrix for client-go, and Kubernetes determines which Kubernetes versions
are required for kube-state-metrics.

Kubernetes Monitoring Guide Intro to Kubernetes Monitoring 12

https://github.com/kubernetes/dashboard
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/client-go
https://github.com/kubernetes/client-go#compatibility-matrix

This at least gives you a sense of the steps you’d take to build reasonable monitoring for your
Kubernetes environment. You still wouldn’t have detailed application monitoring (“What’s the response
time for my database service?”), but you could see your underlying hosts, Kubernetes nodes, and
some monitoring of the state of your Kubernetes abstractions.

Kubernetes liveness and readiness probes
Kubernetes probes perform the important function of regularly monitoring the health or availability of
a pod. Liveness probe is a mechanism that allows the Kubelet to be aware of a deadlock, or any other
situation preventing the application from making progress. If the liveness probe fails after matching
its own criteria, the Kubelet will restart the container. Kubernetes monitoring probes allow you to
arbitrarily define “Liveness” through a request against an endpoint or running a command. Below is a
simple example of a liveness probe based on running a cat command:

#Example Liveness probe for the Sysdig Blog on “Monitoring Kubernetes”
apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-exec
spec:
 containers:
 - name: liveness
 args:
 - /bin/sh
 - -c
 - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600
 image: gcr.io/google_containers/busybox
 livenessProbe:
 exec:
 command:
 - cat
 - /tmp/healthy
 initialDelaySeconds: 5
 periodSeconds: 5

 #source https://kubernetes.io/docs/tasks/configure-pod-container/configure-
liveness-readiness-probes/

The same way a liveness probe checks regularly if a container is alive, readiness probes are
responsible for checking and validating when a container is ready to accept traffic. Readiness probes
are configured similarly to liveness probes, just replace livenessProbe with readinessProbe.

Kubernetes Monitoring Guide Intro to Kubernetes Monitoring 13

Prometheus for Kubernetes monitoring
Prometheus is a time series database, open source, and, like Kubernetes, is a CNCF project. But
Prometheus monitoring is an entire monitoring stack around the Prometheus server that collects and
stores the metrics. This includes Grafana for dashboarding and often a number of exporters, including
small sidecar containers that transform services metrics into Prometheus metrics format.

Prometheus is the de facto approach for monitoring Kubernetes. While it is really easy to start
monitoring Kubernetes with Prometheus, DevOps teams quickly realize that Prometheus has some
roadblocks like scale, RBAC, and teams support for compliance.

Sysdig Monitor for Kubernetes

Kubernetes Monitoring Guide Intro to Kubernetes Monitoring 14

https://sysdig.com/blog/prometheus-metrics/
https://sysdig.com/blog/prometheus-metrics/

Sysdig Monitor and Sysdig backend are able to store and query Prometheus native metrics and
labels. Additionally, users can use Sysdig in the same way that they use Prometheus. You can leverage
Prometheus Query Language queries for dashboards and alerts, or the Prometheus API for scripted
queries, as part of a DevOps workflow. This way, your investments in the Prometheus ecosystem can be
preserved and extended while improving scale and security. Users can take advantage of the Sysdig’s
Advisor already included in Sysdig Monitor to troubleshoot issues and correlate them with other
events. In addition, thanks to the Sysdig agent running on the hosts, users can also capture live activity
data from containers (files, processes, syscalls, network data, etc.), and analyze it with Sysdig Inspect.

Sysdig Monitor is a complete Prometheus managed service that helps users with monitoring
Kubernetes environments and troubleshooting issues.

Lessons learned
1. If you have a non-trivial deployment, you must start thinking about monitoring Kubernetes in a way

that naturally fits with your orchestrated environment.
2. The de facto standard for Kubernetes monitoring is built up from a number of open source tools

like cAdvisor, Kubernetes metrics server, kube-state-metrics, and Prometheus.
3. When monitoring production environments, a commercial tool like Sysdig can provide an

opinionated workflow and supported experience for monitoring Kubernetes while remaining
compatible with Prometheus monitoring. And if you are running large scale environments, we
have you covered thanks to our Prometheus scale capabilities. In addition, Sysdig provides other
great tools - adding a huge extra value - allowing you to troubleshoot and analyze data in almost
real time.

Kubernetes Monitoring Guide Intro to Kubernetes Monitoring 15

03  

Monitoring Kubernetes
with Golden Signals
What are Golden Signal metrics? How do you monitor Golden Signals in Kubernetes applications?
Golden Signals can help detect issues of a microservices application. These signals are a reduced set
of metrics that offer a wide view of a service from a user or consumer perspective, so you can detect
potential problems that might be directly affecting the behavior of the application.

Golden Signals, a standard for Kubernetes
application monitoring
Congratulations, you have successfully deployed your application in Kubernetes. This is the moment
you discover your old monitoring tools are pretty much useless in a modern and scalable environment
like Kubernetes, and that you’re unable to detect potential problems which look completely different
than they do in a more traditional environment. Classic monitoring tools are usually based on static
configuration files and were designed to monitor machines, not microservices or containers. But in the
container world, things change fast. Containers are created and destroyed at an incredible pace and
it’s impossible to catch up without specific service discovery functions. Remember, according to the
latest Sysdig Container Usage Report, most containers live fewer than five minutes.

Most of the modern monitoring systems offer a huge variety of metrics for many different purposes.
It’s quite easy to drown in metrics and lose focus on what really is relevant for your application.
Setting too many irrelevant alerts can drive you to a permanent emergency status and “alert burn
out.” Imagine a node that is being heavily used and raising load alerts all the time. You’re not doing
anything about that as long as the services in the node still work. Having too many alerts is as bad as
not having any because important alerts will drown in a sea of irrelevance.

Kubernetes Monitoring Guide Monitoring Kubernetes with Golden Signals 16

https://sysdig.com/2023-cloud-native-security-and-usage-report/

This is a problem that many people have faced. Fortunately, it has already been solved. The answer
is the four Golden Signals, a term used first in the Google SRE handbook. Golden Signals are four
metrics that will give you a great idea of the real health and performance of your application, as seen
by the actors interacting with that service.

Golden Signals
of Monitoring

Traffic
A measure of how much demand

is being placed on your system,
measured in a high-level

system-specific metric.

The rate of requests that fail,
either explicitly (e.g., HTTP 500),

implicitly, or by policy.

Errors

The time it takes to service a
request. It's important to
distinguish between the latency of
successful requests and the
latency of failed requests.

How "full" your service is. A
measure of your system fraction,
emphasizing the resources that
are most constrained.

Latency

Saturation

Tr
affi

c

Errors Satu
ra
tio

n

Latency

Golden Signals metric: Latency explained
Latency is the time your system takes to serve a request against the service. This is an important sign
used to detect a performance degradation problem.

When using latency, it’s not enough to use average values since they can be misleading. For
example, let’s say you have a service that shows an average of 100ms of response time. With
only this information, you might consider it pretty good, but the feedback of the users is that it’s
perceived as slow.

The answer to this contradiction can be discovered using different statistical parameters, like standard
deviation, that will give us an idea of the dispersion of the latency values. What if you have two kinds
of requests, one very fast and the other slow, because it is more database intensive. If a typical user
interaction has one slow request and 10 fast ones, the mean will probably be pretty low, but the
application will be slow. Bottleneck analysis is important too, not only mean values.

Histogram metrics are a great tool to avoid this behavior. These indicate the number of requests under
different latency thresholds and allow them to aggregate in percentiles. A percentile is a value below
which a given percentage of measures falls. For example, p99 says that 99% of my requests have a
lower latency value than the percentile.

Kubernetes Monitoring Guide Monitoring Kubernetes with Golden Signals 17

https://landing.google.com/sre/books/

As you can see in the screenshot below, average latency is acceptable. But if you look at the
percentile, you see a lot of dispersion in the values, giving a better idea of what the real latency
perception is. Different percentiles express different information; p50 usually expresses general
performance degradation and p95, or p99, allows detection of performance issues in specific
requests or components of the system.

It may think that a high latency in 1% of the requests is not a big issue, but consider a web application
that needs several requests to be fully loaded and displayed. In this common scenario, a high latency
in 1% of the requests can affect a much higher rate of final users, because one of these multiple
requests is slowing down the performance of the whole application.

Another useful tool to analyze latency values can be tthe APDEX score that, given your SLA terms, can
provide a general idea of how good your system condition is based on percentiles.

Golden Signals metric: Errors explained
The rate of errors returned by your service is a very good indicator of deeper issues. It’s very
important to not only detect explicit errors, but implicit errors too.

An explicit error would be any kind of HTTP error code. These are pretty easy to identify as the
error code is easily obtained from the reply headers, and they are pretty consistent throughout many
systems. Some examples of these errors could be authorization error (503), content not found (404),
or server error (500). Error description can be very specific in some cases (418 - I’m a teapot).

On the other hand, implicit errors can be trickier to detect. How about a request with HTTP response
code 200 but with an error message in the content? Different policy violations should be considered
as errors too:

 • Errors that do not generate HTTP reply, as a request that took longer than the timeout.
 • Content error in an apparently successful request.

Kubernetes Monitoring Guide Monitoring Kubernetes with Golden Signals 18

https://prometheus.io/docs/practices/histograms/#apdex-score
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/418

When using dashboards to analyze HTTP errors, mean values or percentiles don’t make sense. In
order to properly see the impact of errors, use rates. The percentage of requests that end in errors per
second can give detailed information about when the system started to fail and with what impact.

Besides the HTTP errors that we can monitor and analyze in our infrastructure, there are other
types of errors that are worth mentioning and, most importantly, detecting and tracking in your
Kubernetes environment:

 • CrashLoopBackOff: A Kubernetes state representing a restart loop in a Pod. A container running
in a Pod is crashing and being restarted permanently.

 • OOM Kill: A container tries to allocate more memory than allowed, reaching the memory limit.
This container is killed and restarted by Kubernetes.

 • CPU Throttling: This will never be considered as an explicit error but it could rank well among
the implicit errors. CPU usage reaches the limit set for a specific workload, and Kubernetes
automatically slows down the CPU to consume fewer resources and avoid surpassing the limit.
This approach will slow down the response time of the application, likely causing errors in the
service itself.

 • Image Pull Error: A container is failing to start as it cannot pull the image.
 • Liveness and Readiness errors: These errors can happen during the start-up phase (Readiness)

if the container is not ready just before accepting connections, or during the runtime if the
container is not responsive when Liveness probe runs.

Golden Signals metric: Traffic / connections explained
Traffic or connections is an indicator of the amount of use of your service per time unit. It can have
many different values depending on the nature of the system, like the number of requests to an
API or the bandwidth consumed by a streaming app. It can be useful to group the traffic indicators
depending on different parameters, like response code or related to business logic.

When talking about Kubernetes, the traffic term can apply to different layers, like Ingress traffic, Egress
traffic, or even the internal communications within the cluster through the CNI plugin of your choice.
Ensure you properly monitor traffic from all the different layers in your Kubernetes cluster.

Golden Signals metric: Saturation explained
This metric should be the answer to the following question: How full is my system?

Usually, saturation is expressed as a percentage of the maximum capacity, but each system will have
different ways to measure saturation. The percentage could mean the number of users, or requests,
obtained directly from the application or based upon estimations. Often, saturation is derived from
system metrics, like CPU or memory, so they don’t rely on instrumentation and are collected directly
from the system using different methods, like Prometheus node-exporter. Obtaining system metrics
from a Kubernetes node is essentially the same as with any other system. At the end of the day, they
are Linux machines.

It’s important to choose the adequate metrics and use as few as possible. The key to successfully
measuring saturation is to choose the metrics that are constraining the performance of the system. If your
application is processor intensive, use CPU load. If it’s memory intensive, choose used memory. The
process of choosing saturation metrics is often a good exercise to detect bottlenecks in the application.

Kubernetes Monitoring Guide Monitoring Kubernetes with Golden Signals 19

https://sysdig.com/blog/debug-kubernetes-crashloopbackoff/
https://sysdig.com/blog/troubleshoot-kubernetes-oom/
https://sysdig.com/blog/kubernetes-limits-requests/
https://sysdig.com/blog/kubernetes-errimagepull-imagepullbackoff/

You should set alerts in order to detect saturation with some margin because usually, the performance
drastically falls when saturation exceeds 80%.

Golden Signals vs. RED method vs. USE method in Kubernetes
There are several approaches to design an efficient monitoring system for an application, but
commonly, they are based on the four Golden Signals. Some of them, like the RED method, give more
importance to organic metrics, like requests rate, errors, and latency. Others, like the USE method,
focus on system level metrics and low-level values like use of the CPU, memory, and I/O. When do
you need to use each approach?

RED method is focused on parameters of the application, without considering the infrastructure that
runs the applications. It’s an external view of the service, how the clients see the service. Golden
Signals try to add the infra component by adding the saturation value, which will be necessarily
implied from system metrics. This way, we have a deeper view, as every service is unavoidably tied
to the infrastructure running it. Maybe an external view is fine, but saturation will give you an idea of
“how far” the service is from a failure.

USE method puts the emphasis on the utilization of resources, including errors in the requests as the
only external indicator of problems. This method could overlook issues that affect some parts of the
service. What if the database is slow due to a bad query optimization? That would increase latency but
would not be noticeable in saturation. Golden Signals try to get the best of both methods, including
external observable and system parameters.

Having said this, all of these methods have a common point — they try to homogenize and simplify
complex systems in an effort to make incident detection easier. If you’re capable of detecting an issue
with a smaller set of metrics, the process of scaling your monitoring to a big number of systems will be
almost trivial.

As a positive side effect, reducing the number of metrics involved in incident detection helps to
diminish alert fatigue due to arbitrary alerts set on metrics that will undoubtedly become a real issue or
do not have a clear direct action path.

As a weakness, any simplification will remove details in the information received. It’s important to
note that, despite Golden Signals being a good way to detect ongoing or future problems, once the
problem is detected, the investigation process will require the use of different inputs to be able to
dig deeper into the root cause of the problem. Any tool at hand can be useful for the troubleshooting
process, like logs, custom metrics, or different metric aggregation. For example, separate latency per
deployment.

Kubernetes Monitoring Guide Monitoring Kubernetes with Golden Signals 20

Golden Signal Metrics Instrumentation in Kubernetes

Instrumenting code with Prometheus metrics / custom metrics
In order to get Golden Signals with Prometheus, code changes (instrumentation) will be required. This
topic is quite vast and addressed in our blog, Prometheus metrics / OpenMetrics code instrumentation.

Prometheus has been positioned as a de facto standard for metric collecting, so most of the languages
have a library to implement custom metrics in your application in a more convenient way. Nevertheless,
instrumenting custom metrics requires a deep understanding of what the application does.

A poorly implemented code instrumentation can end up with time series cardinality bombing and a real
chance to collapse your metrics collection systems. Using request id as a label, for example, generates
a time series per request (seen in a real use case). Obviously, this is something you don’t want in your
monitoring system as it increases resources needed to collect the information and can potentially cause
downtimes. Choosing the correct aggregation can be key to a successful monitoring approach.

Sysdig eBPF system call visibility (no instrumentation)
Sysdig monitor uses eBPF protocol to gather information of all the system calls directly from the kernel.
This way, your application doesn’t need any modification in the code or at container runtime. What is
running in your nodes is the exact container you built, with the exact version of the libraries and your
code (or binaries) intact.

System calls can give information about the processes running, memory allocation, network
connections, access to the filesystem, and resource usage, among other things. With this information,
it’s possible to obtain meaningful metrics that will provide additional information about what is
happening in your systems.

Sysdig agent collects the System calls and stores its data in the form of metrics for you. This way, you
can correlate all this valuable information received directly from the kernel with Golden Signals, the
Kubernetes internal components, or even your own workloads.

Golden Signals are some of the metrics available out-of-the-box with Sysdig monitor, providing latency,
requests rate, errors, and saturation with a special added value that all of these metrics are correlated
with the information collected from the Kubernetes API. This correlation allows you to do meaningful
aggregations and represent the information using multiple dimensions:

 • Group latency by node > This will provide information about different problems with your
Kubernetes infrastructure.

 • Group latency by deployment > This allows to track problems in different microservices or
applications.

 • Group latency by pod > Perhaps a pod in your deployment is unhealthy.
 • Group latency by container > This will give you information about problems in any of your

containers.

These different levels of aggregation allow us to slice our data and locate issues, helping with
troubleshooting tasks by digging into the different levels of the Kubernetes entities, from cluster, to
node, to deployment, to pod, and then to container.

Kubernetes Monitoring Guide Monitoring Kubernetes with Golden Signals 21

https://sysdig.com/blog/prometheus-metrics/
https://sysdig.com/blog/prometheus-metrics/

In a new level of abstraction, with Sysdig Monitor, thanks to the correlation between System calls and
the Kubernetes API metrics, monitoring data can be represented and grouped by workloads. You
might prefer, or it just might be easier for you, to spot issues identifying which workload is involved in
some specific problem.

As mentioned earlier, with Sysdig Monitor you can group latencies using different dimensions,
but there is much more. Not only latencies, but errors, traffic, and saturation can be aggregated
and provide data the same way. Monitor your services and workloads, your Kubernetes or cloud
infrastructure, and troubleshoot issues, from top to bottom. It’s something you can easily do in a few
steps with the out-of-the-box dashboards and tools that Sysdig Monitor provides.

A practical example of Golden Signals in Kubernetes
As an example, to illustrate the use of Golden Signals, let’s say you have deployed a simple Go
application example with Prometheus instrumentation. This application will apply a random delay
between zero and 12 seconds in order to give usable information of latency. Traffic will be generated
with curl, with several infinite loops.

If you have included a histogram to collect metrics related to latency and requests, these metrics will
help us obtain the first three Golden Signals: latency, request rate, and error rate. You can obtain
saturation directly with Prometheus and node-exporter, using the percentage of CPU in the nodes in
this example.

package main

import (
 “fmt”
 “log”
 “math/rand”
 “net/http”
 “time”

 “github.com/gorilla/mux”
 “github.com/prometheus/client_golang/prometheus”
 “github.com/prometheus/client_golang/prometheus/promhttp”)

func main() {
 //Prometheus: Histogram to collect required metrics
 histogram := prometheus.NewHistogramVec(prometheus.HistogramOpts{
 Name: “greeting_seconds”,
 Help: “Time take to greet someone”,
 Buckets: []float64{1, 2, 5, 6, 10}, //Defining small buckets as this app
should not take more than 1 sec to respond
 }, []string{“code”}) //This will be partitioned by the HTTP code.

 router := mux.NewRouter()
 router.Handle(“/sayhello/{name}”, Sayhello(histogram))

Kubernetes Monitoring Guide Monitoring Kubernetes with Golden Signals 22

https://prometheus.io/docs/practices/histograms/

 router.Handle(“/metrics”, promhttp.Handler()) //Metrics endpoint for scrapping
 router.Handle(“/{anything}”, Sayhello(histogram))
 router.Handle(“/”, Sayhello(histogram))
 //Registering the defined metric with Prometheus
 prometheus.Register(histogram)

 log.Fatal(http.ListenAndServe(“:8080”, router))
}

func Sayhello(histogram *prometheus.HistogramVec) http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {

 //Monitoring how long it takes to respond
 start := time.Now()
 defer r.Body.Close()
 code := 500
 defer func() {
 httpDuration := time.Since(start)
 histogram.WithLabelValues(fmt.Sprintf(“%d”, code)).Observe(httpDuration.
Seconds())
 }()

 if r.Method == “GET” {
 vars := mux.Vars(r)
 code = http.StatusOK
 if _, ok := vars[“anything”]; ok {
 //Sleep random seconds
 rand.Seed(time.Now().UnixNano())
 n := rand.Intn(2) // n will be between 0 and 3
 time.Sleep(time.Duration(n) * time.Second)
 code = http.StatusNotFound
 w.WriteHeader(code)
 }
 //Sleep random seconds
 rand.Seed(time.Now().UnixNano())
 n := rand.Intn(12) //n will be between 0 and 12
 time.Sleep(time.Duration(n) * time.Second)
 name := vars[“name”]
 greet := fmt.Sprintf(“Hello %s \n”, name)
 w.Write([]byte(greet))
 } else {
 code = http.StatusBadRequest
 w.WriteHeader(code)
 }
 }
}

Kubernetes Monitoring Guide Monitoring Kubernetes with Golden Signals 23

You can go through the following procedure to deploy this application on your Kubernetes cluster:

First of all, ensure you have the following packages installed on your system. If not, install them.

yum install -y git make go

Create a new namespace for your new application.

$ kubectl create namespace prompt

Clone the following repo, it contains the example application.

$ git clone https://github.com/carillan81/prometheus-example-app.git
Cloning into ‘prometheus-example-app’...
remote: Enumerating objects: 17, done.
remote: Counting objects: 100% (8/8), done.
remote: Compressing objects: 100% (6/6), done.
remote: Total 17 (delta 2), reused 2 (delta 2), pack-reused 9
Receiving objects: 100% (17/17), 5.67 KiB | 5.67 MiB/s, done.
Resolving deltas: 100% (2/2), done.

Compile the binary running make.

$ cd prometheus-example-app
$ go mod init
$ go get github.com/gorilla/mux
$ go get github.com/prometheus/client_golang/prometheus
$ make
go build -o prometheus-example-app
podman build -t sysdiglabs/prom-example:latest .
STEP 1/3: FROM golang:1.12
STEP 2/3: ADD prometheus-example-app /bin/prometheus-example-app
--> ce977809f0d
STEP 3/3: ENTRYPOINT [“/bin/prometheus-example-app”]
COMMIT sysdiglabs/prom-example:latest
apiVersion: v1
--> bf81147f298
Successfully tagged localhost/sysdiglabs/prom-example:latest
bf81147f298b11837be7d044335d47ab14cedbe490b65d6fe6a4d741bb2fa2ed

Kubernetes Monitoring Guide Monitoring Kubernetes with Golden Signals 24

Tag your new image and push it to your repository to make it public.

$ podman tag localhost/sysdiglabs/prom-example:latest myimage/promapp:latest
$ podman push myimage/promapp:latest
Getting image source signatures
Copying blob 7ca605383307 skipped: already exists
Copying blob 8ac92ddf84b3 skipped: already exists
Copying blob dc65f448a2e2 skipped: already exists
Copying blob dea4ecac934f skipped: already exists
Copying blob 346ffb2b67d7 skipped: already exists
Copying blob 020f524b99dd skipped: already exists
Copying blob ed835d26b2a9 done
Copying blob 06036b0307c9 skipped: already exists
Copying config bf81147f29 done
Writing manifest to image destination
Storing signatures

Deploy the application creating a simple Pod manifest.

apiVersion: v1
kind: Pod
metadata:
 name: promapp
 labels:
 app: promapp
spec:
 containers:
 - name: promapp
 image: myimage/promapp:latest
 ports:
 - containerPort: 8080

Create the pod, and a service to make it accessible within your cluster.

$ kubectl create -f promapp-pod.yaml -n promapp
$ kubectl get pods -o wide -n promapp
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES
promapp 1/1 Running 0 8s 192.169.103.29 k8s-control-1.lab.example.com
<none> <none>
$ kubectl create svc clusterip promapp --tcp=8080:8080 -n promapp
$ kubectl get svc -n promapp
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

Kubernetes Monitoring Guide Monitoring Kubernetes with Golden Signals 25

promapp ClusterIP 10.96.199.55 <none> 8080/TCP 29m
$ kubectl get ep -n promapp
NAME ENDPOINTS AGE
promapp 192.169.103.29:8080 29m

Forward the port to make the service accessible from your computer and check that the application
works properly.

$ kubectl port-forward svc/promapp 8080:8080 -n promapp
Forwarding from 127.0.0.1:8080 > 8080
Forwarding from [::1]:8080 > 8080
$ curl http://localhost:8080/sayhello/Scott
Hello Scott

Check whether the embedded metrics endpoint is working or not.

curl -s http://localhost:8080/metrics|grep promhttp_metric_handler_requests_
total
HELP promhttp_metric_handler_requests_total Total number of scrapes by HTTP
status code.
TYPE promhttp_metric_handler_requests_total counter
promhttp_metric_handler_requests_total{code=”200”} 8
promhttp_metric_handler_requests_total{code=”500”} 0
promhttp_metric_handler_requests_total{code=”503”} 0
curl -s http://localhost:8080/metrics|grep greeting_seconds_bucket
greeting_seconds_bucket{code=”200”,le=”1”} 1
greeting_seconds_bucket{code=”200”,le=”2”} 3
greeting_seconds_bucket{code=”200”,le=”5”} 4
greeting_seconds_bucket{code=”200”,le=”6”} 5
greeting_seconds_bucket{code=”200”,le=”10”} 5
greeting_seconds_bucket{code=”200”,le=”+Inf”} 6
greeting_seconds_bucket{code=”404”,le=”1”} 0
greeting_seconds_bucket{code=”404”,le=”2”} 0
greeting_seconds_bucket{code=”404”,le=”5”} 0
greeting_seconds_bucket{code=”404”,le=”6”} 0
greeting_seconds_bucket{code=”404”,le=”10”} 0
greeting_seconds_bucket{code=”404”,le=”+Inf”} 1

Kubernetes Monitoring Guide Monitoring Kubernetes with Golden Signals 26

Once you have deployed the application in a Kubernetes cluster with Prometheus and Grafana, and
generated a dashboard with Golden Signals, you can obtain the data for the dashboards using these
PromQL queries:

 • Latency:

sum(greeting_seconds_sum)/sum(greeting_seconds_count) //Average
histogram_quantile(0.95, sum(rate(greeting_seconds_bucket[5m])) by (le)) //
Percentile p95

 • Request rate:

sum(rate(greeting_seconds_count{}[2m])) //Including errors
rate(greeting_seconds_count{code=”200”}[2m]) //Only 200 OK requests

 • Errors per second:

sum(rate(greeting_seconds_count{code!=”200”}[2m]))

 • Saturation: You can use CPU percentage obtained with node-exporter:

100 - (avg by (instance) (irate(node_cpu_seconds_total{}[5m])) * 100)

Kubernetes Monitoring Guide Monitoring Kubernetes with Golden Signals 27

This way, you obtain this dashboard with the Golden Signals:

This cluster also has the Sysdig Agent installed. Sysdig allows you to obtain these same Golden
Signals without the use of instrumentation (although Sysdig could pull in Prometheus metrics too!).
With Sysdig, you could use a default dashboard and obtain the same meaningful information
out-of-the-box!

Kubernetes Monitoring Guide Monitoring Kubernetes with Golden Signals 28

Depending on the nature of the application, it’s possible to do different aggregations:
 • Response time segmented by response code
 • Error rate segmented by response code
 • CPU usage per service or deployment

Alerting on application layer metrics
In order to generate application alerts for Golden Signals, you typically need to instrument your
application via Prometheus metrics, statsd, or JMX.

Here are some metrics and their alerts that are often found in this category:

 • Application availability up/down
 • Application response time or latency
 • Application error requests rate
 • Application requests rate

 • Middleware specific metrics: Python uwsgi
workers, JVM heap size, etc.

 • Database specific metrics: cache hits,
indexes, etc.

The following example is a public REST API endpoint monitoring alert for latency over 10 seconds in
a 10 minute window. The alert covers the java app deployment in the production namespace prod,
using Prometheus custom metrics.

PromQL query:

histogram_quantile(0.95,sum(rate(http_request_duration_seconds_bucket
{code=~”20+”,kubernetes_namespace=”prod”,app=”javaapp”}[5m])) by (le)) > 10

Kubernetes Monitoring Guide Monitoring Kubernetes with Golden Signals 29

https://sysdig.com/blog/prometheus-metrics/
https://sysdig.com/blog/monitoring-statsd-metrics/
https://sysdig.com/blog/jmx-monitoring-custom-metrics/

Caveats and gotchas of Golden Signals in Kubernetes
 • Golden Signals are one of the best ways to detect possible problems, but once the problem is

detected you will have to use additional metrics and steps to further diagnose it. Detecting issues
and resolving them are two different tasks, and they require separate tools and views of the
application.

 • Mean is not always meaningful. Check standard deviation too, especially with latency. Take
into consideration the request path of your application to look for bottlenecks. You should use
percentiles instead of averages (or in addition to them).

 • Does it make sense to alert every time the CPU or load is high? Probably not. Avoid “alert
burnout,” setting alerts only in parameters that are clearly indicative of problems. If it’s not an
actionable alert, simply remove it.

 • In the situation where a parameter doesn’t look good but it’s not affecting your application
directly, don’t set an alert. Instead, create tasks in your backlog to analyze the behavior and avoid
possible issues in the long-term.

Lessons learned
1. Knowing the Golden Signals for Kubernetes monitoring enables you to save time by looking at

what really matters and avoiding traps that could mask the real problem.
2. By correlating system call information with information collected from the Kubernetes API, allow

you to slice your data and locate issues faster. This speeds troubleshooting tasks by exposing
performance problems at the different levels of the Kubernetes entities.

3. Sysdig provides a huge collection of out-of-the-box dashboards, not only for Golden Signals but
“Pod Golden Signals,” “Pod status”, “resources requested”, and “resources used” dashboards,
among others. It facilitates the heavy task of troubleshooting and diagnosing problems.

4. Implicit errors like CPU Throttling, other Kubernetes errors like CrashLoopBackOff, or Image Pull
errors are visible thanks to the Sysdig Advisor. You can detect, troubleshoot, and fix these issues
almost in real time.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 30

04  

Monitoring Kubernetes
Infrastructure and Core Components

Monitoring Kubernetes Infrastructure
Given that Kubernetes adds reliability by adding/moving pods within the cluster, one node is not
attached to the applications running on top of it, so the availability of the nodes is transformed into a
capacity issue. We have to ensure that nodes work well enough to not be a problem, and that we have
enough nodes to run our workloads. If a node fails, the workloads running there automatically are
migrated to a different node. As long as there are spare resources to run everything, there will be only
a minor interruption, and if the system is well designed, no interruption at all.

Alerting on the host or Kubernetes node layer
Alerting at the host layer shouldn’t be very different from monitoring cloud instances, VMs, or bare
metal servers. It’s going to be mostly about if the host is up or down/unreachable, and resource
availability (CPU, memory, disk, etc.).

Now, the main difference is the severity of the alerts. Before, a system down likely meant you had an
application down and an incident to handle (barring effective high availability). With Kubernetes,
services are now ready to move across hosts and host alerts should never wake you up, as long as you
have enough of them to run your apps. You only need to be sure that the dead host has been replaced
by a new one.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 31

Let’s look at a couple of options that you should still consider:

Host is down

If a host is down or unreachable, you might want to receive a notification. You should apply this single
alert across your entire infrastructure. Give it a five-minute wait time in this case, since you don’t
want to see noisy alerts on network connectivity hiccups. You might want to lower that down to one
or two minutes depending on how quickly you want to receive a notification, but you risk flapping
notifications if your hosts go up and down too often.

Later in this document, you will see that since you have another layer in the orchestration that acts
as a high availability system, one node failing is not of extreme importance. Anyway, you have to
monitor the number of nodes remaining referenced to the load you’re running so you can ensure the
active nodes can handle the load. In addition, you should be aware of the moment when the failure of
another node would provoke a shortage of resources to run all of the workloads.

Monitoring Kubernetes Infrastructure and Core Components 32Kubernetes Monitoring Guide

Disk usage

This is a slightly more complex alert. You can apply this alert across all file systems of our entire
infrastructure. You manage to do that setting everywhere using scope and firing a separate
evaluation/alert per mount (in Sysdig fs.mountDir).

This is a generic alert that triggers over 80% usage, but you might want different policies like a
second higher priority alert with a higher threshold, like 95%, or different thresholds depending on
the file system.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 33

If you want to create different thresholds for different services or hosts, simply change the scope
to where you want to apply a particular threshold. If you need more advanced disk alerts, PromQL
has some functions that allow you to do linear predictions and see how fast the disk is filling at the
current rate.

PromQL query:

(predict_linear(node_filesystem_free{job=”node”}[1h],43200)) < 0

This alert will trigger in case the disk is going to be full in the next 12 hours at current speed.

Some other resources

Usual suspects in this category are alerts on load, CPU usage, memory, and swap usage. You probably
want to send a notification, but not wake anyone, if any of those are significantly higher during a
prolonged time frame. A compromise needs to be found between the threshold, the wait time, and
how noise can become your alerting system with no actionable alerts.

If you still want to set up metrics for these resources, look at the following metrics names on
Sysdig Monitor:

 • For load: load.average.1m, load.average.5m, and load.average.15m
 • For CPU: cpu.used.percent
 • For memory: memory.used.percent or memory.bytes.used
 • For swap: memory.swap.used.percent or memory.swap.bytes.used

In this category, some people also include monitoring the cloud provider resources that are part of
their infrastructure.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 34

https://www.robustperception.io/reduce-noise-from-disk-space-alerts
https://www.robustperception.io/reduce-noise-from-disk-space-alerts

Do you have enough Kubernetes nodes in the cluster?

A node failure is not a problem in Kubernetes, since the scheduler will spawn the containers from the
pods in the failed node into other available nodes. But what if you are running out of nodes, or the
resource requirements for the deployed applications overbook existing nodes? And are you hitting a
quota limit?

Alerting in these cases is not easy, as it will depend on how many nodes you want to have on standby
or how far you want to push oversubscription on your existing nodes. To monitor a node status alert on
the metrics: kube_node_status_ready and kube_node_spec_unschedulable.

An example of this would be the following expression:

sum(namespace:kube_pod_container_resource_requests_cpu_cores:sum)
 /
 sum(node:node_num_cpu:sum)
 >
 (count(node:node_num_cpu:sum)-1) / count(node:node_num_cpu:sum)

This means the alert would trigger in case the sum of all of the requested resources is greater than the
capacity of the cluster in case one of the nodes fails.

If you want to alert on capacity, you will have to sum each scheduled pod request for CPU and
memory, and then check that it doesn’t go over each node: kube_node_status_capacity_cpu_cores and
kube_node_status_capacity_memory_bytes.

For example, this query would alert in case the requested resources are above 90% of the
available quota:

100 * kube_resourcequota{job=”kubernetes-service-endpoints”, type=”used”}
 / ignoring(instance, job, type)
 (kube_resourcequota{job=”kubernetes-service-endpoints”, type=”hard”} > 0)
 > 90

Control Plane
The main components of the control plane are:

 • API Server
 • Kubelet
 • Controller manager

 • etcd
 • Kube-proxy
 • kube-dns

In this section, we will describe why and how to monitor the API Server, Kubelet, controller manager,
and etcd.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 35

Monitoring Kubernetes control plane in Sysdig Monitor
In order to track the Kubernetes control plane in Sysdig Monitor, you only need to have the Sysdig
agent up and running, it is already configured to start scraping Kubernetes control plane metrics
automatically. On the other hand, you can always use your own Prometheus instance to gather the
metrics and filter them. Prometheus is installed by default in Openshift 4 or when using Kubernetes
metrics manager. If you don’t have one, no need to worry, with Sysdig Monitor it is not required at all.
Anyway, deploying a new one is as simple as executing two commands: create a namespace for the
Prometheus, and deploy it with helm 3.

$ kubectl create ns monitoring
$ helm repo add prometheus-community https://prometheus-community.github.io/
helm-charts
$ helm repo update
$ helm install -f values.yaml prometheus -n monitoring prometheus-community/
prometheus

And use this for values.yaml:

server:
 strategy:
 type: Recreate
 podAnnotations:
 prometheus.io/scrape: “true”
 prometheus.io/port: “9090”

Once Prometheus is up and running, you are ready to start scraping metrics!

Sysdig Monitor is able to pull the Kubernetes control plane metrics automatically, no additional steps
are required.

Disclaimer: Some of the control plane jobs might be disabled by default. If you miss any of the
Kubernetes control plane metrics or dashboards, reach out to your customer support representative and
request activation.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 36

https://prometheus-community.github.io/helm-charts
https://prometheus-community.github.io/helm-charts

How to monitor the Kubernetes API server
Learning how to monitor the Kubernetes API server is of vital importance when running Kubernetes in
production. Monitoring kube-apiserver will let you detect and troubleshoot latency, errors, and validate
the service performs as expected. Keep reading to learn how you can collect the most important
apiserver metrics and use them to monitor this service.

The Kubernetes API server is a foundational component of the Kubernetes control plane. All of the
services running inside the cluster use this interface to communicate between each other. The entirety
of user interaction is handled through the API as well; kubectl is a wrapper to send requests to the
API. While kubectl uses HTTP to connect to the API server, some of the control plane components, like
the etcd, use gRPC. You should be ready to monitor both channels.

Like with any other microservice, we’re going to take the Golden Signals approach to monitor the
Kubernetes API server health and performance:

 • Latency
 • Request rate
 • Errors
 • Saturation

Before we dive into the meaning of each one, let’s see how you can fetch those metrics.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 37Kubernetes Monitoring Guide

https://sysdig.com/blog/monitor-kubernetes-api-server/

Getting the metrics to monitor kube-apiserver

The API server has been instrumented and it exposes Prometheus metrics by default, providing
monitoring metrics like latency, requests, errors, and etcd cache status. This endpoint can be easily
scraped, obtaining useful information without the need for additional scripts or exporters.

The API server requires authentication to make a request to /metrics endpoint, so you need to
get credentials with privileges for that. If you’re running Prometheus inside the cluster, you can
authenticate using the prometheus-server service account already bound to the prometheus-server
ClusterRole, granting GET requests to /metrics endpoint.

$ kubectl get clusterrolebinding prometheus-server -n monitoring -o json|jq
“.roleRef,.subjects”
{
 “apiGroup”: “rbac.authorization.k8s.io”,
 “kind”: “ClusterRole”,
 “name”: “prometheus-server”
}
[
 {
 “kind”: “ServiceAccount”,
 “name”: “prometheus-server”,
 “namespace”: “monitoring”
 }
]
$ kubectl get clusterrole prometheus-server -o json |jq “.rules[2]”
{
 “nonResourceURLs”: [
 “/metrics”
],
 “verbs”: [
 “get”
]
}

You can access the /metrics endpoint using the bearer token from the service account, present in the
pod, in /var/run/secrets/kubernetes.io/serviceaccount.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 38

https://sysdig.com/blog/prometheus-metrics/

You can test the authentication by executing this shell command from within the Prometheus pod:

/prometheus $ wget -S --header “Authorization: Bearer $(cat /var/run/secrets/
kubernetes.io/serviceaccount/token)” https://kubernetes.default.svc/metrics
Connecting to kubernetes.default.svc (10.96.0.1:443)
wget: note: TLS certificate validation not implemented
 HTTP/1.1 200 OK
 Audit-Id: fae26052-f669-4ac0-93ef-40e1d751f1d8
 Cache-Control: no-cache, private
 Content-Type: text/plain; version=0.0.4; charset=utf-8
 X-Kubernetes-Pf-Flowschema-Uid: 2647e24e-e736-4d39-aeb4-a096b29f02ab
 X-Kubernetes-Pf-Prioritylevel-Uid: ac1f14db-1afd-4c4a-a195-0e1a692082cb
 Date: Fri, 28 Oct 2022 10:17:18 GMT
 Connection: close
 Transfer-Encoding: chunked

It will return a long list of Prometheus metrics (truncated here):

/prometheus $ head metrics
HELP aggregator_openapi_v2_regeneration_count [ALPHA] Counter of OpenAPI v2
spec regeneration count broken down by causing APIService name and reason.
TYPE aggregator_openapi_v2_regeneration_count counter
aggregator_openapi_v2_regeneration_count{apiservice=”*”,reason=”startup”} 0
aggregator_openapi_v2_regeneration_count{apiservice=”k8s_internal_local_
delegation_chain_0000000002”,reason=”update”} 0
aggregator_openapi_v2_regeneration_count{apiservice=”v3.projectcalico.
org”,reason=”add”} 0
aggregator_openapi_v2_regeneration_count{apiservice=”v3.projectcalico.
org”,reason=”update”} 0
HELP aggregator_openapi_v2_regeneration_duration [ALPHA] Gauge of OpenAPI v2
spec regeneration duration in seconds.
TYPE aggregator_openapi_v2_regeneration_duration gauge
aggregator_openapi_v2_regeneration_duration{reason=”add”} 0.044517713
aggregator_openapi_v2_regeneration_duration{reason=”startup”} 0.01630406
...

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 39

Configuring Prometheus to scrape the Kubernetes API server endpoint can be done by adding one
job to your targets (it is already provided by default by installing Prometheus with the community
Prometheus Helm chart):

- job_name: ‘kubernetes-apiservers’
 kubernetes_sd_configs:
 - role: endpoints
 scheme: https
 tls_config:
 ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
 bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
 relabel_configs:
 - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_
name, __meta_kubernetes_endpoint_port_name]
 action: keep
 regex: default;kubernetes;https

Monitoring the Kubernetes API server: What to look for?

You can also use Golden Signals to monitor the Kubernetes API server.

Disclaimer: API server metrics might differ between Kubernetes versions. Here, we used Kubernetes
1.25. You can check the metrics available for your version in the Kubernetes repo.

Latency: Latency can be extracted from the apiserver_request_duration_seconds histogram
buckets. Data is broken down into different categories, like verb, group, version, resource,
component, etc.

HELP apiserver_request_duration_seconds [STABLE] Response latency distribution
in seconds for each verb, dry run value, group, version, resource, subresource,
scope and component.
TYPE apiserver_request_duration_seconds histogram
apiserver_request_duration_seconds_bucket{component=””,dry_
run=””,group=””,resource=””,scope=””,subresource=”/
healthz”,verb=”GET”,version=””,le=”0.005”} 42577
apiserver_request_duration_seconds_bucket{component=””,dry_
run=””,group=””,resource=””,scope=””,subresource=”/
healthz”,verb=”GET”,version=””,le=”0.025”} 45964
apiserver_request_duration_seconds_bucket{component=””,dry_
run=””,group=””,resource=””,scope=””,subresource=”/
healthz”,verb=”GET”,version=””,le=”0.05”} 46010
apiserver_request_duration_seconds_bucket{component=””,dry_
run=””,group=””,resource=””,scope=””,subresource=”/
healthz”,verb=”GET”,version=””,le=”0.1”} 46014
apiserver_request_duration_seconds_bucket{component=””,dry_
run=””,group=””,resource=””,scope=””,subresource=”/

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 40

https://github.com/prometheus-community/helm-charts/blob/main/charts/prometheus/values.yaml
https://github.com/prometheus-community/helm-charts/blob/main/charts/prometheus/values.yaml
https://github.com/kubernetes/apiserver/blob/release-1.25/pkg/endpoints/metrics/metrics.go

healthz”,verb=”GET”,version=””,le=”0.2”} 46014
apiserver_request_duration_seconds_bucket{component=””,dry_
run=””,group=””,resource=””,scope=””,subresource=”/
healthz”,verb=”GET”,version=””,le=”0.4”} 46014
apiserver_request_duration_seconds_bucket{component=””,dry_
run=””,group=””,resource=””,scope=””,subresource=”/
healthz”,verb=”GET”,version=””,le=”0.6”} 46014
apiserver_request_duration_seconds_bucket{component=””,dry_
run=””,group=””,resource=””,scope=””,subresource=”/
healthz”,verb=”GET”,version=””,le=”0.8”} 46014
apiserver_request_duration_seconds_bucket{component=””,dry_
run=””,group=””,resource=””,scope=””,subresource=”/
healthz”,verb=”GET”,version=””,le=”1”} 46014
apiserver_request_duration_seconds_bucket{component=””,dry_
run=””,group=””,resource=””,scope=””,subresource=”/
healthz”,verb=”GET”,version=””,le=”1.25”} 46014
apiserver_request_duration_seconds_bucket{component=””,dry_
run=””,group=””,resource=””,scope=””,subresource=”/
healthz”,verb=”GET”,version=””,le=”1.5”} 46014
apiserver_request_duration_seconds_bucket{component=””,dry_
run=””,group=””,resource=””,scope=””,subresource=”/
healthz”,verb=”GET”,version=””,le=”2”} 46014
apiserver_request_duration_seconds_bucket{component=””,dry_
run=””,group=””,resource=””,scope=””,subresource=”/
healthz”,verb=”GET”,version=””,le=”3”} 46014
apiserver_request_duration_seconds_bucket{component=””,dry_
run=””,group=””,resource=””,scope=””,subresource=”/
healthz”,verb=”GET”,version=””,le=”4”} 46014

It’s a good idea to use percentiles to understand the latency spread:

histogram_quantile(0.99,
sum(rate(apiserver_request_duration_seconds_bucket{job=\”kubernetes-
apiservers\”}[5m])) by (verb, le))

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 41Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 41

Request rate: The metric apiserver_request_total can be used to monitor the requests to the
service, where they are coming from, as well as to which service, which action, and whether they
were successful:

TYPE apiserver_request_count counter
apiserver_request_total{client=”Go-http-client/1.1”,code=”0”,contentType=””,res
ource=”pods”,scope=”namespace”,subresource=”portforward”,verb=”CONNECT”} 4
apiserver_request_total{client=”Go-http-clie
nt/2.0”,code=”200”,contentType=”application/
json”,resource=”alertmanagers”,scope=”cluster”,subresource=””,verb=”LIST”} 1
apiserver_request_total{client=”Go-http-clie
nt/2.0”,code=”200”,contentType=”application/
json”,resource=”alertmanagers”,scope=”cluster”,subresource=””,verb=”WATCH”}
72082
apiserver_request_total{client=”Go-http-client/2.0”,code=”200”,contentType=”app
licationson”,resource=”clusterinformations”,scope=”cluster”,subresource=””,verb
=”LIST”} 1

For example, you can get all of the successful requests across the service like this:

sum(rate(apiserver_request_total{job=\”kubernetes-apiservers\”,code=~\”2..\”}
[5m]))

Errors: You can use the same query used for request rate, but filter for 400 and 500 error codes:

sum(rate(apiserver_request_total{job=\”kubernetes-apiservers\”,code=~\”[45]..\”}
[5m]))

It is even more interesting monitoring the error rate vs. the total amount of requests. This way, you get
the magnitude of the errors for the Kubernetes API server requests.

sum(rate(apiserver_request_total{job=\”kubernetes-apiservers\”,code=~”[45]..”}
[5m]))*100/sum(rate(apiserver_request_total{job=\”kubernetes-apiservers\”}[5m]))

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 42

Saturation: You can monitor saturation through system resource consumption metrics like CPU,
memory, and network I/O for this service.

In addition to API server related metrics, you can access other relevant metrics. API server offers:
 • From controller-manager:

 • work queue addition rate: How fast are you scheduling new actions to perform by
controller? These actions can include additions, deletions, and modifications of any resource
in the cluster (workloads, configmaps, services, etc.).

 • work queue latency: How fast is the controller-manager performing these actions?
 • work queue depth: How many actions are waiting to be executed?

 • From etcd:
 • etcd cache entries: How many query results have been cached?
 • etcd cache hit/miss rate: Is cache being useful?
 • etcd cache duration: How long are the cache results stored?

Examples of issues in API server

You detect an increase of latency in the requests to the API.

This is typically a sign of overload in the API server. Most likely, your cluster has a lot of load and the
API server needs to be scaled out. You can segment the metrics by type of request, resource, or verb.
This way, you can detect where the problem is. Maybe you are having issues reading or writing to etcd
and need to fix it.

You detect an increase in the depth and latency of the work queue.

You are having issues scheduling actions. You should check that the scheduler is working. Maybe
some of your nodes are overloaded and you need to scale out your cluster. Maybe one node is having
issues and you want to replace it.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 43

Monitoring Kubernetes API server metrics in Sysdig Monitor

If you want to monitor Kubernetes API server using Sysdig Monitor, just run the Sysdig agent on your
Kubernetes nodes, as we explained earlier in the “Monitoring kubernetes control plane in Sysdig
Monitor” section. Then, you only need to log into the Sysdig portal and review your data in the out-of-
the-box API Server dashboard. Here is an API server dashboard in Sysdig Monitor.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 44

How to monitor Kubelet
Monitoring Kubelet is essential when running Kubernetes in production. Kubelet is a very important
service inside Kubernetes’ control plane. It’s the component that cares that the containers described
by pods are running in the nodes. Kubelet works in a declarative way by receiving PodSpecs and
ensuring that the current state matches desired pods.

Kubelet has some differences with other control plane components as it’s the only one that runs
over the host OS in the nodes, and not as a Kubernetes entity. This makes kubelet monitoring a little
special, but you can still rely on Prometheus service discovery (node).

Getting metrics from Kubelet

Kubelet has been instrumented and it exposes Prometheus metrics by default in the port 10250 of the
host, providing information about pods’ volumes and internal operations. This endpoint can be easily
scraped, obtaining useful information without the need for additional scripts or exporters.

You can scrape Kubelet metrics accessing the port in the node directly by using the secure port and
authenticating with your token.

In order to get the Kubelet metrics, get access to the node itself, or ssh into a Pod, this service is
listening on 0.0.0.0 address, so in terms of connectivity, there are no restrictions at all. If the Pod has
access to the host network, you can access it using localhost too.

$ curl -k -H “Authorization: Bearer $(cat /var/run/secrets/kubernetes.io/
serviceaccount/token)” https://localhost:10250/metrics

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 45

https://sysdig.com/blog/how-to-monitor-kubelet/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#node
https://sysdig.com/blog/prometheus-metrics/

You will get a long list of metrics with this structure (truncated):

HELP apiserver_audit_event_total Counter of audit events generated and sent to
the audit backend.
TYPE apiserver_audit_event_total counter
apiserver_audit_event_total 0
HELP apiserver_audit_requests_rejected_total Counter of apiserver requests
rejected due to an error in audit logging backend.
TYPE apiserver_audit_requests_rejected_total counter
apiserver_audit_requests_rejected_total 0
HELP apiserver_client_certificate_expiration_seconds Distribution of the
remaining lifetime on the certificate used to authenticate a request.
TYPE apiserver_client_certificate_expiration_seconds histogram
apiserver_client_certificate_expiration_seconds_bucket{le=”0”} 0
apiserver_client_certificate_expiration_seconds_bucket{le=”1800”} 0
...

If you want to configure Prometheus to scrape Kubelet, you can add this job to your targets:

 - bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
 job_name: kubernetes-nodes
 kubernetes_sd_configs:
 - role: node
 relabel_configs:
 - action: labelmap
 regex: __meta_kubernetes_node_label_(.+)
 - replacement: kubernetes.default.svc:443
 target_label: __address__
 - regex: (.+)
 replacement: /api/v1/nodes/$1/proxy/metrics
 source_labels:
 - __meta_kubernetes_node_name
 target_label: __metrics_path__
 scheme: https
 tls_config:
 ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
 insecure_skip_verify: true

You can customize your own labels and relabeling configuration.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 46Kubernetes Monitoring Guide

Monitoring Kubelet: What to look for?

Disclaimer: Kubelet metrics might differ between Kubernetes versions. Here, we used Kubernetes 1.25.
You can check the metrics available for your version in the Kubernetes repo.

Number of Kubelet instances: This value will give an idea of the general health of the Kubelet in the
nodes. The expected value is the number of nodes in the cluster. You can obtain this value counting
targets found by Prometheus or by checking the process if you have low-level access to the node.
A possible PromQL query for a single stat graph would be:

sum(kubelet_node_name)

Another way to count the number of Ready nodes is:
Note: If you want to get the number of not-ready nodes, filter by status=”false”.

sum(kube_node_status_condition{condition=”Ready”, status=”true”})

Number of pods and containers running: Kubelet provides insight to the number of pods and
containers really running in the node. You can check this value with the one expected, or reported, by
Kubernetes to detect possible issues in the nodes.

HELP kubelet_running_pod_count Number of pods currently running
TYPE kubelet_running_pod_count gauge
kubelet_running_pods 9
HELP kubelet_running_container_count Number of containers currently running
TYPE kubelet_running_container_count gauge
kubelet_running_containers 9

Number of volumes: In the system, kubelet mounts the volumes indicated by the controller so it can
provide information on them. This can be useful to diagnose issues with volumes that aren’t being
mounted when a pod is recreated in a statefulSet. It provides two metrics than can be represented
together; the number of desired volumes and the number of volumes actually mounted:

HELP volume_manager_total_volumes Number of volumes in Volume Manager
TYPE volume_manager_total_volumes gauge
volume_manager_total_volumes{plugin_name=”kubernetes.io/
configmap”,state=”actual_state_of_world”} 1
volume_manager_total_volumes{plugin_name=”kubernetes.io/
configmap”,state=”desired_state_of_world”} 1

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 47

https://github.com/kubernetes/apiserver/blob/release-1.25/pkg/endpoints/metrics/metrics.go

volume_manager_total_volumes{plugin_name=”kubernetes.io/empty-
dir”,state=”actual_state_of_world”} 1
volume_manager_total_volumes{plugin_name=”kubernetes.io/empty-
dir”,state=”desired_state_of_world”} 1
volume_manager_total_volumes{plugin_name=”kubernetes.io/host-
path”,state=”actual_state_of_world”} 55
volume_manager_total_volumes{plugin_name=”kubernetes.io/host-
path”,state=”desired_state_of_world”} 55
volume_manager_total_volumes{plugin_name=”kubernetes.io/secret”,state=”actual_
state_of_world”} 4
volume_manager_total_volumes{plugin_name=”kubernetes.io/secret”,state=”desired_
state_of_world”} 4

Differences between these two values (outside of transitory phases) can be a good indicator of issues.

Golden Signals of every operation performed by kubelet (Operation rate, operation error rate
and operation duration). Saturation can be measured with system metrics and Kubelet offers detailed
information of the operations performed by the daemon. Metrics than can be used are:

 • kubelet_runtime_operations_total: Total count of runtime operations of each type.

HELP kubelet_runtime_operations_total Cumulative number of runtime
operations by operation type.
TYPE kubelet_runtime_operations_total counter
kubelet_runtime_operations_total{operation_type=”container_status”} 225
kubelet_runtime_operations_total{operation_type=”create_container”} 44
kubelet_runtime_operations_total{operation_type=”exec”} 5
kubelet_runtime_operations_total{operation_type=”exec_sync”} 1.050273e+06
...

This is a counter metric, you can use the rate function to calculate the average increase rate for
Kubelet runtime operations.

sum(rate(kubelet_runtime_operations_total{job=\”kubernetes-nodes\”}[5m]))
by (operation_type, instance)

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 48

https://sysdig.com/blog/golden-signals-kubernetes/

 • kubelet_runtime_operations_errors_total: Count of errors in the operations. This can be a
good indicator of low-level issues in the node, such as problems with container runtime.

HELP kubelet_runtime_operations_errors_total Cumulative number of runtime
operation errors by operation type.
TYPE kubelet_runtime_operations_errors_total counter
kubelet_runtime_operations_errors_total{operation_type=”container_status”}
18
kubelet_runtime_operations_errors_total{operation_type=”create_container”}
1
kubelet_runtime_operations_errors_total{operation_type=”exec_sync”} 7

 • kubelet_runtime_operations_duration_seconds_bucket: Duration of the operations. Useful
to calculate percentiles.

HELP kubelet_runtime_operations_duration_seconds Duration in seconds of
runtime operations. Broken down by operation type.
TYPE kubelet_runtime_operations_duration_seconds histogram
kubelet_runtime_operations_duration_seconds_bucket{operation_
type=”container_status”,le=”0.005”} 194
kubelet_runtime_operations_duration_seconds_bucket{operation_
type=”container_status”,le=”0.01”} 207
...

You may want to calculate the 99th percentile of the Kubelet runtime operations duration by
instance and operation type.

histogram_quantile(0.99, sum(rate(kubelet_runtime_operations_duration_
seconds_bucket{instance=~”.*”}[5m])) by (instance, operation_type, le))

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 49

Pod start rate and duration: This could indicate issues with container runtime or with access to
images.

 • kubelet_pod_start_duration_seconds_count: Number of pod start operations.

HELP kubelet_pod_start_duration_seconds Duration in seconds for a single
pod to go from pending to running.
TYPE kubelet_pod_start_duration_seconds histogram
...
kubelet_pod_worker_duration_seconds_count{operation_type=”sync”} 196
...

 • kubelet_pod_worker_duration_seconds_count: The number of create, sync, and update
operations for a single Pod.

HELP kubelet_pod_worker_duration_seconds Duration in seconds to sync a
single pod. Broken down by operation type: create, update, or sync
TYPE kubelet_pod_worker_duration_seconds histogram
...
kubelet_pod_worker_duration_seconds_count{operation_type=”sync”} 196
...

 • kubelet_pod_start_duration_seconds_bucket: This metric gives you a histogram on the
duration, in seconds, from the Kubelet seeing a Pod for the first time to the Pod starting to run.

HELP kubelet_pod_worker_duration_seconds Duration in seconds to sync a
single pod. Broken down by operation type: create, update, or sync
TYPE kubelet_pod_worker_duration_seconds histogram
kubelet_pod_worker_duration_seconds_bucket{operation_
type=”sync”,le=”0.005”} 194
kubelet_pod_worker_duration_seconds_bucket{operation_type=”sync”,le=”0.01”}
195
...

You can get the 95th percentile of the Pod start duration seconds metric by node.

histogram_quantile(0.95,sum(rate(kubelet_pod_start_duration_seconds_
bucket{instance=~”.*”}[5m])) by (instance, le))

Monitoring Kubernetes Infrastructure and Core Components 50Kubernetes Monitoring Guide

 • kubelet_pod_worker_duration_seconds_bucket: This metric provides the duration in
seconds to sync a Pod. The information is broken down into three different types (create, update,
and sync).

HELP kubelet_pod_worker_duration_seconds Duration in seconds to sync a
single pod. Broken down by operation type: create, update, or sync
TYPE kubelet_pod_worker_duration_seconds histogram
kubelet_pod_worker_duration_seconds_bucket{operation_
type=”sync”,le=”0.005”} 194
kubelet_pod_worker_duration_seconds_bucket{operation_type=”sync”,le=”0.01”}
195
...

It may be worth checking percentiles for the Kubelet Pod worker duration metric as well. This way,
you will get a better understanding of how the different operations are performing across all the
nodes.

histogram_quantile(0.99, sum(rate(kubelet_pod_worker_duration_seconds_
bucket{instance=~”.*”}[5m])) by (instance, operation_type, le))

Storage Golden Signals (operation rate, error rate, and duration).
 • storage_operation_duration_seconds_count: The number of storage operations for every
volume_plugin.

HELP storage_operation_duration_seconds Storage operation duration
TYPE storage_operation_duration_seconds histogram
...
storage_operation_duration_seconds_count{operation_name=”verify_controller_
attached_volume”,volume_plugin=”kubernetes.io/configmap”} 16
…

In order to get the storage operation rate, you can use the following query. Get an overview on
the different operations performed, the status of each operation, and the volume plugin involved.

sum(rate(storage_operation_duration_seconds_count{instance=~”.*”}[5m])) by
(instance, operation_name, volume_plugin, status)

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 51

 • storage_operation_duration_seconds_bucket: Measures the duration, in seconds, for each
storage operation. This information is represented by a histogram.

HELP storage_operation_duration_seconds Storage operation duration
TYPE storage_operation_duration_seconds histogram
storage_operation_duration_seconds_bucket{operation_name=”verify_
controller_attached_volume”,volume_plugin=”kubernetes.io/
configmap”,le=”0.1”} 16
storage_operation_duration_seconds_bucket{operation_name=”verify_
controller_attached_volume”,volume_plugin=”kubernetes.io/
configmap”,le=”0.25”} 16
...

This time, you may want to get the 99th percentile of the storage operation duration, grouped by
instance, operation name, and volume plugin.

histogram_quantile(0.99, sum(rate(storage_operation_duration_seconds_
bucket{instance=~”.*”}[5m])) by (instance, operation_name, volume_plugin,
le))

Cgroup manager operation rate and duration.
 • kubelet_cgroup_manager_duration_seconds_count: This metric counts the number of

destroy and update operations.

HELP kubelet_cgroup_manager_duration_seconds Duration in seconds for
cgroup manager operations. Broken down by method.
TYPE kubelet_cgroup_manager_duration_seconds histogram
...
kubelet_cgroup_manager_duration_seconds_count{operation_type=”create”} 28
...

Monitoring Kubernetes Infrastructure and Core Components 52Kubernetes Monitoring Guide

 • kubelet_cgroup_manager_duration_seconds_bucket: This metric provides the duration, in
seconds, for the cgroup manager operations. This data is broken down into two different methods
(destroy and update).

HELP kubelet_cgroup_manager_duration_seconds Duration in seconds for
cgroup manager operations. Broken down by method.
TYPE kubelet_cgroup_manager_duration_seconds histogram

kubelet_cgroup_manager_duration_seconds_bucket{operation_
type=”create”,le=”0.005”} 11
kubelet_cgroup_manager_duration_seconds_bucket{operation_
type=”create”,le=”0.01”} 21
...

Let’s see how to get a histogram that represents the 99th percentile of the Kubelet cgroup
manager operations. This query will help you better understand the duration of every Kubelet
cgroup operation type.

histogram_quantile(0.99, sum(rate(kubelet_cgroup_manager_duration_seconds_
bucket{instance=~”.*”}[5m])) by (instance, operation_type, le))

Pod Lifecycle Event Generator (PLEG): A module in the Kubelet responsible for adjusting the container
runtime state. To achieve this task, it relies on a periodic listing to discover container changes. These
metrics can be useful for you to determine whether there are errors with latencies at container runtime.
Relist rate, relist interval, and relist duration are some of the metrics shown here. Errors or excessive
latency in these values can provoke issues in the Kubernetes status of the pods.

 • kubelet_pleg_relist_duration_seconds_count: The number of relisting operations in
PLEG.

HELP kubelet_pleg_relist_duration_seconds Duration in seconds for
relisting pods in PLEG.
TYPE kubelet_pleg_relist_duration_seconds histogram
...
kubelet_pleg_relist_duration_seconds_count 5.344102e+06
...

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 53

 • kubelet_pleg_relist_interval_seconds_bucket: This metric provides a histogram with the
interval in seconds between relisting operations in PLEG.

HELP kubelet_pleg_relist_interval_seconds Interval in seconds between
relisting in PLEG.
TYPE kubelet_pleg_relist_interval_seconds histogram
kubelet_pleg_relist_interval_seconds_bucket{le=”0.005”} 0
kubelet_pleg_relist_interval_seconds_bucket{le=”0.01”} 0
...

You can get the 99th percentile of the interval between Kubelet relisting PLEG operations.

histogram_quantile(0.99, sum(rate(kubelet_pleg_relist_interval_seconds_
bucket{instance=~”.*”}[5m])) by (instance, le))

 • kubelet_pleg_relist_duration_seconds_bucket: This is the duration in seconds for relisting
Pods in PLEG.

HELP kubelet_pleg_relist_duration_seconds Duration in seconds for
relisting pods in PLEG.
TYPE kubelet_pleg_relist_duration_seconds histogram
kubelet_pleg_relist_duration_seconds_bucket{le=”0.005”} 2421
kubelet_pleg_relist_duration_seconds_bucket{le=”0.01”} 4.335858e+06
...

This time, let’s see how to build a histogram representing the 99th percentile of Kubelet PLEG
relisting operations.

histogram_quantile(0.99, sum(rate(kubelet_pleg_relist_duration_seconds_
bucket{instance=~”.*”}[5m])) by (instance, le))

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 54

Examples of issues in Kubelet

Pods are not starting.

This is typically a sign of Kubelet having problems connecting to the container runtime running below.
Check for the pod start rate and duration metrics to see if there is latency creating the containers,
or if they are in fact starting.

A node doesn’t seem to be scheduling new pods.

Check the Kubelet job number. There’s a chance that Kubelet has died in a node and is unable to
schedule pods.

Kubernetes seems to be slow performing operations.

Check all of the Golden Signals in Kubelet metrics. It may have issues with storage, latency,
communicating with the container runtime engine, or load issues.

Monitoring Kubelet metrics in Sysdig Monitor

In order to track Kubelet in Sysdig Monitor, just run the Sysdig agent on your Kubernetes nodes, as we
explained above in “Monitoring kubernetes control plane in Sysdig Monitor”. Log into the Sysdig portal,
and check out the Kubelet out-of-the-box dashboard. Here is a Kubelet dashboard in Sysdig Monitor.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 55

How to monitor Controller Manager
Monitoring kube-controller-manager is important, as it is a main component of Kubernetes control
plane. Kube-controller-manager runs in master nodes and it takes care of the different controller
processes. These controllers watch the status of the different services deployed through the API and
take corrective actions in case real and desired status don’t match.

Kube-controller-manager takes care of nodes, workloads (replication controllers), namespaces
(namespace controller), and service accounts (serviceaccount controller), among other things.

Getting metrics from kube-controller-manager

Controller-manager has been instrumented and it exposes Prometheus metrics by default, providing
information about work-queues and requests to the API. This endpoint can be easily scraped,
obtaining all of this information without any calculation.

Disclaimer: The following steps might not work if you used kubeadm with default values to deploy your
Kubernetes cluster. Kubeadm sets the kube‑controller‑manager bind‑address as 127.0.0.1 by default. For
that reason, a regular Prometheus instance without a network interface in the host network won’t be able
to reach the metrics endpoint.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 56

https://sysdig.com/blog/how-to-monitor-kube-controller-manager/
https://github.com/kubernetes/kubernetes/blob/e8e20ce563ce1981aa2d4e639fa5bdd1a4d4446f/cmd/kubeadm/app/phases/controlplane/manifests.go#L303

We can test the endpoint running a curl from a pod with network access in master nodes:

$ curl -k -H “Authorization: Bearer $(cat /var/run/secrets/kubernetes.io/
serviceaccount/token)” https://localhost:10257/metrics

It will return a long list of metrics with this structure (truncated):

HELP apiserver_audit_event_total [ALPHA] Counter of audit events generated and
sent to the audit backend.
TYPE apiserver_audit_event_total counter
apiserver_audit_event_total 0
HELP apiserver_audit_requests_rejected_total [ALPHA] Counter of apiserver
requests rejected due to an error in audit logging backend.
TYPE apiserver_audit_requests_rejected_total counter
apiserver_audit_requests_rejected_total 0
HELP apiserver_client_certificate_expiration_seconds [ALPHA] Distribution of
the remaining lifetime on the certificate used to authenticate a request.
TYPE apiserver_client_certificate_expiration_seconds histogram
apiserver_client_certificate_expiration_seconds_bucket{le=”0”} 0
apiserver_client_certificate_expiration_seconds_bucket{le=”1800”} 0
...

If we want to configure a Prometheus to scrape API endpoint, we can add this job to our targets:

 scrape_configs:
 - honor_labels: true
 job_name: kubernetes-pods
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - action: keep
 regex: true
 source_labels:
 - __meta_kubernetes_pod_annotation_prometheus_io_scrape
 - action: replace
 regex: (https?)
 source_labels:
 - __meta_kubernetes_pod_annotation_prometheus_io_scheme
 target_label: __scheme__
 - action: replace
 regex: (.+)
 source_labels:
 - __meta_kubernetes_pod_annotation_prometheus_io_path

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 57

http://kubernetes.io/serviceaccount/token
http://kubernetes.io/serviceaccount/token

 target_label: __metrics_path__
 - action: replace
 regex: (.+?)(?::\d+)?;(\d+)
 replacement: $1:$2
 source_labels:
 - __address__
 - __meta_kubernetes_pod_annotation_prometheus_io_port
 target_label: __address__
 - action: labelmap
 regex: __meta_kubernetes_pod_annotation_prometheus_io_param_(.+)
 replacement: __param_$1
 - action: labelmap
 regex: __meta_kubernetes_pod_label_(.+)
 - action: replace
 source_labels:
 - __meta_kubernetes_namespace
 target_label: namespace
 - action: replace
 source_labels:
 - __meta_kubernetes_pod_name
 target_label: pod
 - action: drop
 regex: Pending|Succeeded|Failed|Completed
 source_labels:
 - __meta_kubernetes_pod_phase

In addition, we need to add annotations to the pod, so we have to modify the manifest in the master
node located in /etc/kubernetes/manifests/kube‑controller‑manager.yaml and add these following
annotations:

prometheus.io/scrape: “true”
 prometheus.io/port: “10257”
 prometheus.io/scheme: “https”

Monitoring the controller manager: What to look for?

Disclaimer: kube‑controller‑manager metrics might differ between Kubernetes versions. Here, we used
Kubernetes 1.25. You can check the metrics available for your version in the Kubernetes repo.

Number of kube-controller-manager instances: This value will give an idea of the general health of
the kubelet in the nodes. The expected value is the number of nodes in the cluster. You can obtain this
value counting targets found by Prometheus or by checking the process if you have low-level access to
the node.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 58

https://github.com/kubernetes/apiserver/blob/release-1.25/pkg/endpoints/metrics/metrics.go

A possible PromQL query for a single stat graph would be:

sum(up{container=”kube-controller-manager”})

Workqueue information: It provides metrics with information about workqueue to detect possible
bottlenecks or issues processing different commands. We will focus on aggregated metrics from all
of the controllers, but you have different metrics available for queues of various controllers, like AWS
controller, node controller or service account controller.

 • Workqueue latency: It’s the time that kube-controller-manager is taking to fulfill the different
actions to keep the desired status of the cluster. A good way to represent this are quantiles:

histogram_quantile(0.99, sum(rate(workqueue_queue_duration_seconds_
bucket{container=”kube-controller-manager”}[5m])) by (instance, name, le))

 • Workqueue rate: It’s the number of required actions per unit time. A high value could indicate
problems in the cluster of some of the nodes.

sum(rate(workqueue_adds_total{container=”kube-controller-manager”}[5m])) by
(instance, name)

You may want to check the rate of additions to the kube-controller-manager workqueue. If that’s
the case, run the following query.

sum(rate(workqueue_adds_total{container=”kube-controller-manager”}[5m])) by
(instance, name)

 • Workqueue depth: It’s the number of actions waiting in the queue to be performed. It should
remain at low values.

The following query will allow you to easily see the increase rate in the kube-controller-manager
queue. The bigger the workqueue is, the more that has to process, so a workqueue growing
trend may indicate problems in your Kubernetes cluster.

sum(rate(workqueue_depth{container=”kube-controller-manager”}[5m])) by
(instance, name)

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 59

Information about requests to Api‑server: It provides information about requests performed to
the api-server, so you can check that the connectivity is fine and that the api-server is providing the
information needed to perform controller operations.

 • Latency: Use this query if you want to calculate the 99th percentile of latencies on requests to the
Kubernetes API server.

histogram_quantile(0.99, sum(rate(rest_client_request_duration_seconds_
bucket{container=”kube-controller-manager”}[5m])) by (url, le))

Request rate and errors: This metric provides the number of HTTP client requests for kube-
controller-manager by HTTP response code.

sum(rate(rest_client_requests_total{container=”kube-controller-
manager”,code=~\”2..\”}[5m]))
sum(rate(rest_client_requests_total{container=”kube-controller-
manager”,code=~\”3..\”}[5m]))
sum(rate(rest_client_requests_total{container=”kube-controller-
manager”,code=~\”4..\”}[5m]))
sum(rate(rest_client_requests_total{container=”kube-controller-
manager”,code=~\”5..\”}[5m]))

Saturation metrics (requires node_exporter):
 • CPU usage: The total CPU time, spent in seconds, for kube-controller-manager by instance.

rate(process_cpu_seconds_total{container=”kube-controller-manager”}[5m])

 • Memory usage: This metric measures the amount of resident memory size in bytes for kube-
controller-manager by instance.

rate(process_resident_memory_bytes{container=”kube-controller-manager”}
[5m])

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 60

Examples of issues in kube-controller-manager

Workloads desired and current status mismatch

This can be caused by many different issues, but since the kube-controller-manager is the main
component responsible with harmonizing current and desired status, we have a possible origin of the
issue. Check that the kube-controller-manager instance is up and that the latency of API requests and
workqueue are under normal values.

Kubernetes seems to be slow performing operations.

Check the latency and depth of workqueue in kube-controller-manager. It may have issues performing
the actions with the API.

Monitoring kube-controller-manager metrics in Sysdig Monitor

In order to get controller manager monitoring in Sysdig Monitor, just run the Sysdig agent on your
Kubernetes nodes, as we explained above in “Monitoring kubernetes control plane in Sysdig Monitor”.
Log into the Sysdig portal, and check out the kube-controller-manager out-of-the-box dashboard. Here
is a controller manager dashboard in Sysdig Monitor.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 61

How to monitor etcd
The motivation of etcd is to provide a distributed key-value dynamic database that maintains a
“configuration registry”. This registry is one of the foundations of a Kubernetes cluster service
directory, peer discovery, and centralized configuration management. It bears a certain resemblance
to a Redis database, classical LDAP configuration backends, or even the Windows Registry if you are
more familiar with those technologies.

According to its developers, etcd aims to be:
 • Simple: well-defined, user-facing API (JSON and gRPC)
 • Secure: automatic TLS with optional client cert authentication
 • Fast: benchmarked 10,000 writes/sec
 • Reliable: properly distributed using Raft

Kubernetes uses the etcd distributed database to store its REST API objects (under the /registry
directory key): pods, secrets, daemonsets, deployments, namespaces, events, etc.

Raft is a “consensus” algorithm. This is a method to achieve value convergence over a distributed and
fault-tolerant set of cluster nodes.

In the event of an etcd quorum lost, and it is unable to elect a new leader, the current pods and
workloads would keep running but no new changes can be made. Not even new Pods could be
scheduled. That’s why monitoring etcd is crucial.

Without going into the gory details that you will find in the referenced articles, here are the basics of
what you need to know:

Node status can be one of:
 • Follower
 • Candidate (briefly)
 • Leader

How does the election process work?
1. If a Follower cannot locate the current Leader, it will become Candidate.
2. The voting system will elect a new Leader among the Candidates.
3. Registry value updates (commits) always go through the Leader.
4. Once the Leader has received the ACK from the majority of Followers, the new value is

considered “committed”.
5. The cluster will survive as long as most of the nodes remain alive.

Perhaps the most remarkable features of etcd are the straightforward way of accessing the service
using REST-like HTTP calls. That makes integrating third-party agents as simple as you can get, as well
as its master-master protocol which automatically elects the cluster Leader and provides a fallback
mechanism to switch this role if needed.

You can run etcd in Kubernetes, inside Docker containers, or as an independent cluster (in virtual
machines or directly bare-metal). Usually, for simple scenarios, etcd is deployed in a Docker container

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 62

https://raft.github.io/
https://sysdig.com/blog/monitor-etcd/

like other Kubernetes services, such as the API server, controller-manager, scheduler, or Kubelet. In
more advanced scenarios, etcd is often an external service. In these cases, you will normally see three
or more nodes to achieve the required redundancy.

When running etcd to store your data for your distributed systems or Kubernetes clusters, it is
recommended to use an odd number of nodes. Quorum needs a majority of nodes in the cluster to
agree on updates to the cluster state. For a cluster with n number of nodes, the quorum needed to
make up a cluster is (n/2)+1. For example:

 • For a three nodes cluster, quorum will be achieved with two nodes. (Failure tolerance one node).
 • For a four nodes cluster, quorum will be achieved with three nodes. (Failure tolerance one node).
 • For a five nodes cluster, quorum will be achieved with three nodes. (Failure tolerance two nodes).

An odd-size cluster tolerates the same number of failures as an even-size cluster, but with fewer nodes.
In addition, in the event of a network partition, an odd number of nodes guarantees that there will
always be a majority partition, avoiding the frightening split-brain scenario. This way, the etcd cluster
can keep operating and being the source of truth when the network partition is resolved.

Getting metrics from etcd

Etcd has been instrumented and it exposes Prometheus metrics by default in the port 2379 of the
master host, providing information of the storage. This endpoint can be easily scraped, obtaining
useful information without the need for additional scripts or exporters.

You can’t scrape etcd metrics accessing the port in the node directly without authentication. The
etcd is the core of any Kubernetes cluster, so its metrics are securitized too. To get the metrics, you
need to have access to the port 2379 or be in the master itself, and you also need to have the client
certificates. If you have access to the master node, just do a curl from there with the client certificate
paths. The certificate is in /etc/kubernetes/pki/etcd/server.crt and the key /etc/kubernetes/
pki/etcd/server.key.

$ curl https://localhost:2379/metrics -k --cert /etc/kubernetes/pki/etcd/server.
crt --key /etc/kubernetes/pki/etcd/server.key

If you want to connect from outside of the master node, and you got the certificates from the master
node and also have the port 2379 open, then you can access it with the IP too.

$ curl https://[master_ip]:2379/metrics -k --cert /etc/kubernetes/pki/etcd/
server.crt --key /etc/kubernetes/pki/etcd/server.key

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 63

https://etcd.io/docs/v3.3/faq/#why-an-odd-number-of-cluster-members
https://sysdig.com/blog/prometheus-metrics/

It will return a long list of metrics with this structure (truncated):

HELP etcd_disk_backend_snapshot_duration_seconds The latency distribution of
backend snapshots.
TYPE etcd_disk_backend_snapshot_duration_seconds histogram
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”0.01”} 0
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”0.02”} 0
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”0.04”} 0
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”0.08”} 0
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”0.16”} 0
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”0.32”} 3286
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”0.64”} 4617
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”1.28”} 4620
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”2.56”} 4620
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”5.12”} 4620
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”10.24”} 4620
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”20.48”} 4620
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”40.96”} 4620
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”81.92”} 4620
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”163.84”} 4620
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”327.68”} 4620
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”655.36”} 4620
etcd_disk_backend_snapshot_duration_seconds_bucket{le=”+Inf”} 4620
etcd_disk_backend_snapshot_duration_seconds_sum 1397.2374600930025
etcd_disk_backend_snapshot_duration_seconds_count 4620
HELP etcd_disk_wal_fsync_duration_seconds The latency distributions of fsync
called by wal.
TYPE etcd_disk_wal_fsync_duration_seconds histogram
etcd_disk_wal_fsync_duration_seconds_bucket{le=”0.001”} 4.659349e+06
etcd_disk_wal_fsync_duration_seconds_bucket{le=”0.002”} 7.276276e+06
etcd_disk_wal_fsync_duration_seconds_bucket{le=”0.004”} 8.589085e+06

If you want to configure a Prometheus to scrape etcd, you have to mount the certificates and create
the job:

The certificates are located in the master node in /etc/kubernetes/pki/etcd/server.key and /etc/
kubernetes/pki/etcd/server.crt, just download them and create the secrets on Kubernetes with the
next command.

Disclaimer: The etcd is the core of any Kubernetes cluster. if you don’t take care with the certificates,
you can expose the entire cluster and potentially be a target.

$ kubectl -n monitoring create secret generic etcd-ca --from-file=server.key
--from-file=server.crt

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 64

$ kubectl -n monitoring patch deployment prometheus-server -p ‘{“spec”:{“templa
te”:{“spec”:{“volumes”:[{“name”:”etcd-ca”,”secret”:{“defaultMode”:420,”secretNa
me”:”etcd-ca”}}]}}}}’
$ kubectl -n monitoring patch deployment prometheus-server -p ‘{“spec”:{“te
mplate”:{“spec”:{“containers”:[{“name”:”prometheus-server”,”volumeMounts”:
[{“mountPath”: “/opt/prometheus/secrets”,”name”: “etcd-ca”}]}]}}}}’

scrape_configs:
 ...
 - job_name: etcd
 scheme: https
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - action: keep
 source_labels:
 - __meta_kubernetes_namespace
 - __meta_kubernetes_pod_name
 separator: ‘/’
 regex: ‘kube-system/etcd.+’
 - source_labels:
 - __address__
 action: replace
 target_label: __address__
 regex: (.+?)(\\:\\d)?
 replacement: $1:2379
 tls_config:
 insecure_skip_verify: true
 cert_file: /opt/prometheus/secrets/server.crt
 key_file: /opt/prometheus/secrets/server.key

You can customize your own labels and relabeling configuration.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 65

Monitoring etcd: What to look for?

Disclaimer: etcd metrics might differ between Kubernetes versions. Here, we used Kubernetes 1.25. You
can check the metrics available for your version in the Kubernetes repo.

etcd node availability: An obvious error scenario for any cluster is that you lose one of the nodes.
The cluster will continue operating, but it is probably a good idea to receive an alert, diagnose, and
recover before you continue losing nodes and risk facing the next scenario: total service failure. The
simplest way to check this is with a PromQL query:

sum(up{job=\”etcd\”})

This should give the number of nodes running. If you detect a missing member or the number is 0,
there is a problem.

etcd has a leader: One key metric is to know if all nodes have a leader. If one node does not, it will
be unavailable, If all nodes don’t have a leader, then the cluster will become totally unavailable. There
is a metric that says whether a node has a leader or not.

HELP etcd_server_has_leader Whether or not a leader exists. 1 is existence, 0
is not.
TYPE etcd_server_has_leader gauge
etcd_server_has_leader 1

etcd leader changes: The leader can change over time, but if it changes too often, these changes
can impact the performance of the etcd itself. This can also be a signal of the leader being unstable
because of connectivity problems, or maybe etcd has too much load.

HELP etcd_server_leader_changes_seen_total The number of leader changes seen.
TYPE etcd_server_leader_changes_seen_total counter
etcd_server_leader_changes_seen_total 1

Consensus proposal: A proposal is a request (i.e., a write request, a configuration change request)
that needs to go through raft protocol. The proposal metrics have four different types: committed,
applied, pending, and failed. All four can give information about the problems the etcd can face, but
the most important is the failed type. If there are proposals failed, it can be for two reasons: the leader
election is failing, or there is a loss of quorum.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 66

https://github.com/kubernetes/apiserver/blob/release-1.25/pkg/endpoints/metrics/metrics.go

For example, if we wanted to set an alert to show that there were more than five consensus proposals
failed over the course of a 15 minute period, we could use this statement:

rate(etcd_server_proposals_failed_total{job=~”etcd”}[15m]) > 5

HELP etcd_server_proposals_applied_total The total number of consensus
proposals applied.
TYPE etcd_server_proposals_applied_total gauge
etcd_server_proposals_applied_total 1.3605153e+07
HELP etcd_server_proposals_committed_total The total number of consensus
proposals committed.
TYPE etcd_server_proposals_committed_total gauge
etcd_server_proposals_committed_total 1.3605153e+07
HELP etcd_server_proposals_failed_total The total number of failed proposals
seen.
TYPE etcd_server_proposals_failed_total counter
etcd_server_proposals_failed_total 0
HELP etcd_server_proposals_pending The current number of pending proposals to
commit.
TYPE etcd_server_proposals_pending gauge
etcd_server_proposals_pending 0

Disk sync duration: As etcd is storing all important things about Kubernetes. The speed of
committing changes to disk and the health of your storage are key indicators if etcd is working
properly. If the disk sync has high latencies, then the disk may have issues or the cluster can become
unavailable. The metrics that show this are wal_fsync_duration_seconds and backend_commit_
duration_seconds.

HELP etcd_disk_backend_commit_duration_seconds The latency distributions of
commit called by backend.
TYPE etcd_disk_backend_commit_duration_seconds histogram
etcd_disk_backend_commit_duration_seconds_bucket{le=”0.001”} 0
etcd_disk_backend_commit_duration_seconds_bucket{le=”0.002”} 5.402102e+06
etcd_disk_backend_commit_duration_seconds_bucket{le=”0.004”} 6.0471e+06
...
etcd_disk_backend_commit_duration_seconds_sum 11017.523900176226
etcd_disk_backend_commit_duration_seconds_count 6.157407e+06
HELP etcd_disk_wal_fsync_duration_seconds The latency distributions of fsync
called by wal.
TYPE etcd_disk_wal_fsync_duration_seconds histogram
etcd_disk_wal_fsync_duration_seconds_bucket{le=”0.001”} 4.659349e+06
etcd_disk_wal_fsync_duration_seconds_bucket{le=”0.002”} 7.276276e+06

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 67

...
etcd_disk_wal_fsync_duration_seconds_sum 11580.35429902582
etcd_disk_wal_fsync_duration_seconds_count 8.786736e+06

To know if the duration of the backend commit is good enough, you can visualize in a histogram. With
the next command, you can show the time latency in which 99% of requests are covered.

histogram_quantile(0.99,
rate(etcd_disk_backend_commit_duration_seconds_bucket{job=~”etcd”}[5m]))

Network peer round trip time: This metric is key and extremely important to measure how
your network and etcd nodes are performing. It indicates the RTT (round trip time) latency
for etcd to replicate a request between etcd members. A high latency or latencies growing over time
may indicate issues in your network, causing serious trouble with etcd requests and even loss of
quorum. There is one complete histogram per communication (from peer to peer). This value should
not exceed 50ms (0.050s).

HELP etcd_network_peer_round_trip_time_seconds Round-Trip-Time histogram
between peers
TYPE etcd_network_peer_round_trip_time_seconds histogram
etcd_network_peer_round_trip_time_seconds_
bucket{To=”bf52b1f71736a183”,le=”0.0001”} 0
etcd_network_peer_round_trip_time_seconds_
bucket{To=”bf52b1f71736a183”,le=”0.0002”} 0
etcd_network_peer_round_trip_time_seconds_
bucket{To=”bf52b1f71736a183”,le=”0.0004”} 0
etcd_network_peer_round_trip_time_seconds_
bucket{To=”bf52b1f71736a183”,le=”0.0008”} 46
etcd_network_peer_round_trip_time_seconds_
bucket{To=”bf52b1f71736a183”,le=”0.0016”} 55
etcd_network_peer_round_trip_time_seconds_
bucket{To=”bf52b1f71736a183”,le=”0.0032”} 59
etcd_network_peer_round_trip_time_seconds_
bucket{To=”bf52b1f71736a183”,le=”0.0064”} 59
etcd_network_peer_round_trip_time_seconds_
bucket{To=”bf52b1f71736a183”,le=”0.0128”} 112
etcd_network_peer_round_trip_time_seconds_
bucket{To=”bf52b1f71736a183”,le=”0.0256”} 116
etcd_network_peer_round_trip_time_seconds_
bucket{To=”bf52b1f71736a183”,le=”0.0512”} 116
etcd_network_peer_round_trip_time_seconds_
bucket{To=”bf52b1f71736a183”,le=”0.1024”} 116
etcd_network_peer_round_trip_time_seconds_
bucket{To=”bf52b1f71736a183”,le=”0.2048”} 116

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 68

etcd_network_peer_round_trip_time_seconds_
bucket{To=”bf52b1f71736a183”,le=”0.4096”} 116
etcd_network_peer_round_trip_time_seconds_
bucket{To=”bf52b1f71736a183”,le=”0.8192”} 116
etcd_network_peer_round_trip_time_seconds_
bucket{To=”bf52b1f71736a183”,le=”1.6384”} 116
etcd_network_peer_round_trip_time_seconds_
bucket{To=”bf52b1f71736a183”,le=”3.2768”} 116
etcd_network_peer_round_trip_time_seconds_
bucket{To=”bf52b1f71736a183”,le=”+Inf”} 116
etcd_network_peer_round_trip_time_seconds_sum{To=”bf52b1f71736a183”}
0.7280363210000003
etcd_network_peer_round_trip_time_seconds_count{To=”bf52b1f71736a183”} 116

To know if the RTT latencies between etcd nodes are good enough, run the following query to
visualize the data in a histogram.

histogram_quantile(0.99,
rate(etcd_network_peer_round_trip_time_seconds_bucket[5m]))

etcd network peer sent failures total: This metric provides the total number of failures sent by peer
or etcd member. It can help to understand better whether a specific node is facing performance or
network issues.

etcd network peer received failures total: The same way the previous metric provided sent
failures, this time, what is measured is the total received failures by peer.

Examples of issues in etcd

Most of the time, your etcd cluster works so neatly that it is easy to forget its nodes are running. Keep
in mind, however, that Kubernetes absolutely needs this registry to function. A major etcd failure will
seriously cripple or even take down your container infrastructure. Pods currently running will continue
to run, but you cannot execute any further operations on them. When you reconnect etcd and
Kubernetes, state incoherences could cause additional malfunction.

Losing quorum

Sometimes, the cluster loses quorum and the etcd goes into a read-only state. Once you lose quorum,
you can still see how the cluster is but you cannot take any action because it will be unable to decide if
it is permitted.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 69

Apply entries took too long

If you see the message apply entries took too long, that’s because the average apply duration exceeds
100 milliseconds. This issue can be caused by three factors:

 • Slow disk
 • Cpu throttling
 • Slow network

Monitoring etcd metrics in Sysdig Monitor

If you want to monitor etcd using Sysdig Monitor, just run the Sysdig agent on your Kubernetes
nodes, as we explained above in “Monitoring kubernetes control plane in Sysdig Monitor”. Log into
the Sysdig portal, and check out the etcd out-of-the-box dashboard. Here is the out-of-the-box etcd
dashboard in Sysdig Monitor.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 70

Alerting on the Kubernetes control plane
Monitoring and alerting at the container orchestration level is two-fold. On one side, you need to
monitor if the services handled by Kubernetes meet the requirements you defined. On the other hand,
you need to make sure all of the components of Kubernetes are up and running.

Is Kubernetes etcd running?
etcd is the distributed service discovery, communication, and command channel for Kubernetes.
Monitoring etcd can go as deep as monitoring a distributed key value database, but we’ll keep things
simple here; etcd works if more than half of the configured instances are running, so let’s alert this.

PromQL query:

count(up{job=”etcd”} == 0) > (count(up{job=”etcd”} == 0) / 2 - 1)

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 71

Is the Kubernetes API server running?
The Kubernetes API server is the center of the Kubernetes control plane. Let’s configure an alert if the
service goes down.

PromQL query:

(absent(up{job=”kube-apiserver”})) == 1

Is the latency of Kubelet too high for the start of the pods?
Kubelet is a very important service inside Kubernetes’ control plane. It’s the component that runs the
containers described by pods in the nodes. That means you can Golden Signal this and check the pod
start rate and duration. High latency here could indicate performance degradation on the container
runtime, or issues trying to access the container images.

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 72

PromQL query:

(histogram_quantile(0.99,sum(rate(kubelet_pod_worker_duration_seconds_
bucket{job=”kubelet”}[5m])) by (instance,le)) * on(instance) group_left(node)
kubelet_node_name) > 60

Lessons learned
1. Monitoring the Kubernetes API server is fundamental, since it’s a key piece in the cluster

operation. Remember, all of the communication between the cluster components is done via
kube-apiserver.

2. Monitoring Kubelet is important. All of the communication with the container runtime is done
through Kubelet. It’s the connection between Kubernetes and the OS running behind.

3. Remember that kube-controller-manager is responsible for having the correct number of elements
in all of the deployments, daemonsets, persistent volume claims, and many other Kubernetes
elements.

4. Some issues in your Kubernetes cluster that appear to be random can be explained by a problem
in the API server or Kubelet. Monitoring API server and Kubelet metrics can save you time when
these problems come, and they will.

Sysdig helps you follow Kubernetes monitoring best practices, which is just as important as monitoring
your workloads and applications running inside the cluster. Don’t forget to monitor your control plane!

Kubernetes Monitoring Guide Monitoring Kubernetes Infrastructure and Core Components 73

05  

Monitoring Kubernetes Workloads
Services and Resources

Monitoring services running on Kubernetes
When looking at the service level, it shouldn’t be much different from what you were doing before
Kubernetes if you had already clustered your services. Think of databases like MySQL/MariaDB
or MongoDB, where you will look at the replication status and lag. Is there anything to take into
account now?

The answer is yes! If you want to know how your service operates and performs globally, you will need
to leverage your monitoring tool capabilities to do metric aggregation and segmentation based on
container metadata.

You know Kubernetes tags containers within a deployment or exposed through a service, as we
explained in Chapter 2: Intro to Kubernetes Monitoring. Now, you need to take that into account when
you define your alerts. For example, scoping alerts only for the production environment, most likely
defined by a namespace.

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 74

Kubernetes workloads hierarchy
Applications in Kubernetes are not flat. They are structured in several hierarchical layers that define
how the services are structured outside the Kubernetes world.

Namespaces

It is the main division of the Kubernetes cluster. Usually namespaces match a logical separation in the
different applications running.

Namespaces can be a very good and intuitive way to segment information collected and to delimitate
access and responsibilities.

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 75

Workloads

These are the basic components of an application. Usually, a microservice is composed of one or
more workloads with relations between them.

There are four main kinds of workloads:
 • Deployment: The most common. They are stateless services that run multiple instances of a pod.
 • DaemonSet: A special deployment that creates one, and only one, pod in every node in the

cluster.
 • StatefulSet: Specially created for applications that need persistence upon restarts and consistency

in the data.
 • Jobs and Cronjobs designed to run specific jobs that do the task and finish.

ReplicaSet

These different workloads use a Replication Controller to take care of the number of replicas run
for every workload. This object takes care of the current state and tries to harmonize that with the
desired state.

Pods

It is the main object in Kubernetes. It is one or more containers running together as a unit with a set of
configurations and sharing storage.

They are usually controlled by a workload and inherit all the parameters from there.

Services

They are abstractions that allow the cluster control to create the network structure to connect different
pods between them and the outside world.

Importance of hierarchy in monitoring Kubernetes

In the Kubernetes world, the fundamental unit is the pod, but it can be a mistake to treat pods as
independent objects. Instead, the different pods and elements are strongly coupled and it is important
to keep that correlation when interpreting the data.

Information provided by a pod can be misleading if you don’t take into account the aggregation of
all the pods in a deployment. The state of a pod is not very important as pods can die and they are
respawned by the system.

Fundamental parameters must be availability of the service, possible points of failure, and availability
of resources.

Monitoring Kubernetes Workloads 76Kubernetes Monitoring Guide

Alerting on services running on Kubernetes

Do you have enough pods/containers running for each application?

Kubernetes has a few options to handle an application that has multiple pods: Deployments,
ReplicaSets, and ReplicationControllers. There are slight differences between them but they can be
used to maintain a number of instances in running the same application. There, the number of running
instances can be changed dynamically if you scale up and down, and this process can even be
automated with auto-scaling.

There are also multiple reasons why the number of running containers can change. That includes
rescheduling containers in a different host because a node failed, or because there aren’t enough
resources and the pod was evicted (don’t miss our Understanding pod evicted blog), a rolling
deployment of a new version, and more.

If the number of replicas or instances running during an extended period of time is lower than
what you desire, it’s a symptom of something not working properly (not enough nodes or resources
available, Kubernetes or Docker Engine failure, Docker image broken, etc.).

An alert that evaluates availability across all services is almost a must in any Kubernetes alerting setup.

kube_deployment_spec_replicas{job=”kubernetes-service-endpoints”}
 !=
kube_deployment_status_replicas_available{job=”kubernetes-service-endpoints”}

As we mentioned before, this situation is acceptable during container reschedule and migrations,
so keep an eye on the configured .spec.minReadySeconds value for each container (time from
container start until it becomes available in ready status). You might also want to check .spec.
strategy.rollingUpdate.maxUnavailable, which defines how many containers can be taken
offline during a rolling deployment.

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 77Kubernetes Monitoring Guide

https://sysdig.com/blog/kubernetes-pod-evicted/

The following is an example alert with this condition applied to a deployment wordpress-wordpress
within a wordpress namespace in a cluster with name kubernetes-dev.

Do you have any pod/containers for a given application?

Similar to the previous alert but with higher priority (this example is a candidate for getting paged in the
middle of the night), you want to alert if there are no containers running at all for a given application.

In the example below, you apply the alert for the same deployment but trigger if running pods is fewer
than one during one minute.

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 78

Is there any pod/container in a restart loop?

When deploying a new version that’s broken, if there aren’t enough resources available or some
requirements/dependencies aren’t in place, you might end up with a container or pod continuously
restarting in a loop. That’s called CrashLoopBackOff. When this happens, pods never get into ready
status and, therefore, are counted as unavailable and not as running. This scenario is already captured
by the alerts before. Still, it’s a good idea to set up an alert that catches this behavior across our entire
infrastructure and immediately identifies the specific problem. It’s not the kind of alert that interrupts
your sleep, but rather one that gives you useful information.

This is an example applied across the entire infrastructure detecting more than four restarts over the
last two minutes.

Understanding Kubernetes limits and requests by example
How you set Kubernetes limits and requests is essential in optimizing application and cluster
performance. One of the challenges of every distributed system designed to share resources between
applications, like Kubernetes, is how to properly share the resources. Applications were typically
designed to run standalone in a machine and use all of the resources at hand. It’s said that good
fences make good neighbors. The new landscape requires sharing the same space with others, and
that makes quotas a hard requirement.

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 79

https://sysdig.com/blog/debug-kubernetes-crashloopbackoff/

Resources
In terms of resources, we can differentiate between CPU resources and memory resources. You can
set requests and limits for both types of resources.

CPU resources are measured in CPU units, where one CPU unit is equivalent to 1000m (millicpu). So
if you want to set 300m, it will be equivalent to 0.3. In Kubernetes, one CPU unit is equivalent to one
Physical CPU core or one Virtual CPU core, depending on the node architecture where Kuberenetes
is running.

Memory resources are measured in bytes. You can use any of these quantity suffixes (E, P, T, G, M, k).
So if you plan to set either a 600M memory request or limit, the equivalent in kb would be 614400k,
or 629145600 for bytes.

Namespace quotas
Kubernetes allows administrators to set quotas, in namespaces, as hard limits for resource usage. This
has an additional effect; if you set a CPU request quota in a namespace, then all pods need to set a
CPU request in their definition, otherwise they will not be scheduled.

Let’s look at an example:

apiVersion: v1
kind: ResourceQuota
metadata:
 name: mem-cpu-example
spec:
 hard:
 requests.cpu: 2
 requests.memory: 2Gi
 limits.cpu: 3
 limits.memory: 4Gi

If you apply this file to a namespace, you will set the following requirements:
 • All pod containers have to declare requests and limits for CPU and memory.
 • The sum of all the CPU requests can’t be higher than two cores.
 • The sum of all the CPU limits can’t be higher than three cores.
 • The sum of all the memory requests can’t be higher than two GiB.
 • The sum of all the memory limits can’t be higher than four GiB.

If you already have 1.9 cores allocated with pods and try to allocate a new pod with 200m of CPU
request, the pod will not be scheduled and will remain in a pending state.

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 80

https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/quota-memory-cpu-namespace/

Explaining pod requests and limits
Kubernetes implements two mechanisms to grant and control the usage of resources:

 • Requests are the resources you want to get guaranteed in a container. The real use of resources
can be lower or higher than Requests, but never will exceed the Limits.

 • Limits sets the amount of resources the container is allowed to use. If a container needs to
exceed and go above this value, it will be denied, causing OOMKill for memory and CPU
throttling when the limit is on the CPU.

Let’s consider this example of a deployment:

kind: Deployment
apiVersion: extensions/v1beta1
metadata:
 name: redis
 labels:
 name: redis-deployment
 app: example-voting-app
spec:
 replicas: 1
 selector:
 matchLabels:
 name: redis
 role: redisdb
 app: example-voting-app
 template:
 spec:
 containers:
 - name: redis
 image: redis:5.0.3-alpine
 resources:
 limits:
 memory: 600Mi
 cpu: 1
 requests:
 memory: 300Mi
 cpu: 500m
 - name: busybox
 image: busybox:1.28
 resources:
 limits:
 memory: 200Mi
 cpu: 300m
 requests:
 memory: 100Mi
 cpu: 100m

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 81

Let’s say you are running a cluster with, for example, four cores and 16GB RAM nodes. You can extract
a lot of information:

1. Pod effective request is 400 MiB of memory and 600 millicores of CPU. You need a node with
enough free allocatable space to schedule the pod.

2. CPU shares for the redis container will be 512, and 102 for the busybox container. Kubernetes
always assign 1,024 shares to every core, so:

 • redis: 1,024 / 0.5 cores =~ 512
 • busybox: 1,024 / 0.1 cores =~ 102

3. Redis container will be Out Of Memory (OOM) killed if it tries to allocate more than 600MB of
RAM, most likely making the pod fail.

4. Redis will suffer CPU throttle if it tries to use more than 100ms of CPU in every 100ms,
(since you have four cores, available time would be 400ms every 100ms) causing performance
degradation.

5. Busybox container will be OOM killed if it tries to allocate more than 200MB of RAM, resulting
in a failed pod.

6. Busybox will suffer CPU throttle if it tries to use more than 30ms of CPU every 100ms, causing
performance degradation.

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 82

In order to detect problems, you should be monitoring:
 • CPU and memory usage in the node. Memory pressure can trigger OOM kills if the node

memory is full, despite all of the containers being under their limits. CPU pressure will throttle
processes and affect performance.

Find these metrics either in Sysdig Monitor in the dashboard:
Host infrastructure > Host Resource usage, or in Sysdig Advisor in Overview > Hosts

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 83

Find these metrics in Sysdig Monitor in the dashboard: Host infrastructure > Host Resource usage

 • Disk space in the node. If the node runs out of disk, it will try to free disk space with a fair chance
of pod eviction.

Find these metrics in Sysdig Monitor in the dashboard: Host infrastructure > Host Resource usage

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 84

 • Percentage of CPU quota used by every container. Monitoring pod CPU usage can lead to
errors. Remember, limits are per container, not per pod. Other CPU metrics, like cpu shares
used, are only valid for allocating, so don’t waste time on them if you have performance issues.

Find these metrics in Sysdig Monitor in the dashboard: Containers > Container CPU & Memory limits

 • Memory usage per container. You can relate this value to the limit in the same graph or analyze
the percentage of memory limit used. Don’t use pod memory usage. A pod in the example can
be using 300MiB of RAM, well under the pod effective limit (400MiB), but if the redis container
is using 100MiB and the busybox container is using 200MiB, the pod will fail.

Find these metrics in Sysdig Monitor in the dashboard: Containers > Container CPU & Memory limits

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 85

 • Percentage of resource allocation in the cluster and the nodes. You can represent this as a
percentage of resources allocated from total available resources. A good warning threshold
would be (n-1)/n * 100, where n is the number of nodes. Over this threshold, in case of a node
failure, you wouldn’t be able to reallocate your workloads in the rest of the nodes.

Find these metrics in Sysdig Monitor in the Sysdig Advisor Overview feature > clusters

 • Limit overcommit (for memory and CPU). The best way to clearly see this is the percentage
that the limit represents in the total allocatable resources. This can go over 100% in a normal
operation.

Custom graph showing CPU usage vs. capacity vs. limits vs. requests.

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 86

Choosing pragmatic requests and limits
When you have some experience with Kubernetes, you usually understand (the hard way) that properly
setting requests and limits is of utmost importance for the performance of the applications and cluster.

In an ideal world, your pods should be continuously using the exact amount of resources you
requested. But the real world is a cold and fickle place, and resource usage is never regular or
predictable. Consider a 25% margin up and down the request value as a good situation. If your usage
is much lower than your request, you’re wasting money. If it’s higher, you’re risking performance issues
in the node.

Requests Too low Ideal value Too High

CPU CPU throttling
Real use of resources
(fair margin)

Hard to allocate pods
Resource wasteMemory

OOM kill
(system memory exhausted)

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 87

Regarding limits, achieving a good setting is a matter of trial and error. There is no optimal value for
everyone as it hardly depends on the nature of the application, the demand model, the tolerance to
errors, and many other factors.

Limits Too low Too High

CPU CPU throttling
Starve other applications if usage rises

Memory OOM kill (limit reached)

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 88

Another thing to consider is the limit overcommit you allow on your nodes.

Limit
overcommit

Conservative
Fewer than 125%

Aggressive
More than 150%

Good Limited risk of resource starvation Increased resource exploitation

Warning More chance of resource wasting More risk of resource starvation in
the node

The enforcement of these limits are on the user, as there is no automatic mechanism to tell Kubernetes
how much overcommit to allow.

Reducing wasted spending
As mentioned in the previous section, if the usage of your containers’ resources is much lower than
the requests you set, you are undoubtedly wasting money.

Every time a request is set in a Pod, the kube-scheduler uses this information to decide on which
node the Pod should run. As soon as the Pod is scheduled and started, it has the Requests resources
guaranteed for its own use.

That’s the main reason why it is so important to be accurate when using Requests in a Pod. It can
harm your pocket if it is set too high, or can cause serious trouble if it’s too low, jeopardizing the
node’s performance.

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 89

In order to avoid wasting resources and save money in your Kubernetes bill, you should consider
monitoring the unused CPU and unused memory in your containers.

Find these metrics in Sysdig Monitor in the dashboard:
Kubernetes > Pod Rightsizing & Workload Capacity Optimization.

Cost monitoring and optimization
In terms of monitoring costs, according to the CNCF FinOps for Kubernetes survey:

 • 68% of people said their Kubernetes costs are rising.
 • About 69% of respondents said they have no Kubernetes monitoring tool or only have Kubernetes

costs estimates.

Also, according to our 2023 Security and Usage report:
 • Organizations with over 1000 nodes could be wasting more than $10 million annually.
 • On average, teams are wasting 69% of the CPU resources they have set for their environments.

Nowadays, many companies are in journeys to move to cloud native, using Kubernetes in one form
or another, since in most of the cases, cloud service providers are the preferred option to host their
workloads. Not implementing a cost monitoring and optimization strategy can be a huge problem
for companies that can’t foresee Kubernetes and cloud costs, and even worse, can’t remediate and
rightsize their workloads effectively.

Sysdig Monitor provides an out-of-the-box tool to help you optimize and rightsize your workloads,
reducing the Kubernetes and cloud service providers bill at the end of the month.

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 90

https://www.cncf.io/wp-content/uploads/2021/06/FINOPS_Kubernetes_Report.pdf
https://sysdig.com/blog/2023-cloud-native-security-usage-report/

Cost Advisor provides all the information on your resource consumption for your Kubernetes clusters,
and automatically elaborates a cost optimization plan for you, providing cost-estimated savings and
remediation plans to apply via a one-liner command.

You can export the Cost Advisor information and load it in a chargeback. This way, you can start
applying FinOps best practices, promoting a culture of cost discipline where all the teams are
reviewing and optimizing cost.

Lessons learned
Some lessons you should learn from this are:

1. Set requests and limits in your workloads. While it is highly recommended, be accurate and
permanently monitor both requests and limits on your containers. Setting inappropriate values
can cause serious problems in your applications and your Kubernetes clusters.

2. Setting a namespace quota will enforce all of the workloads in the namespace to have a request
and limit in every container.

3. Quotas are a necessity to properly share resources. If someone tells you that you can use any
shared service without limits, they’re either lying or the system will eventually collapse, to no fault
of your own.

4. Measuring unused resources, and rightsizing your workloads afterwards, will allow you to reduce
wasted spending in your Kubernetes environments.

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 91

https://sysdig.com/blog/kubernetes-cost-advisor/

How to troubleshoot Kubernetes OOM and CPU Throttle
Experiencing Kubernetes OOM kills can be very frustrating. Why is your application struggling if
you have plenty of CPU in the node? Managing Kubernetes pod resources can be a challenge. Many
issues can arise, possibly due to an incorrect configuration of requests and limits, so it is important to
be able to detect the most common issues related to the usage of resources.

Kubernetes OOM problems
When any Unix-based system runs out of memory, OOM safeguard kicks in and kills certain processes
based on obscure rules only accessible to level 12 dark sysadmins (chaotic neutral). Kubernetes OOM
management tries to avoid the system running behind by triggering its own rules. When the node
is low on memory, Kubernetes eviction policy enters the game and stops pods as failed. If they are
managed by a ReplicaSet, these pods are scheduled in a different node. This frees memory to relieve
the memory pressure.

OOM kill due to container limit reached
This is by far the most simple memory error you can have in a pod. You set a memory limit, one
container tries to allocate more memory than allowed, and it gets an error. This usually ends with a
container dying, one pod unhealthy, and Kubernetes restarting that pod.

test frontend 0/1 Terminating 0 9m21s

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 92

https://en.wikipedia.org/wiki/Alignment_(Dungeons_%26_Dragons)#Chaotic_neutral

kubectl describe pods output would show something like this:

 State: Running
 Started: Thu, 10 Oct 2019 11:14:13 +0200
 Last State: Terminated
 Reason: OOMKilled
 Exit Code: 137
 Started: Thu, 10 Oct 2019 11:04:03 +0200
 Finished: Thu, 10 Oct 2019 11:14:11 +0200
…
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 6m39s default-scheduler
Successfully assigned test/frontend to gke-lab-kube-gke-default-pool-02126501-
7nqc
 Normal SandboxChanged 2m57s kubelet, gke-lab-kube-gke-default-pool-
02126501-7nqc Pod sandbox changed, it will be killed and re-created.
 Normal Killing 2m56s kubelet, gke-lab-kube-gke-default-pool-
02126501-7nqc Killing container with id docker://db:Need to kill Pod

The Exit Code: 137 is important because it means that the system terminated the container as it
tried to use more memory than its limit. In order to monitor this, you always have to look at the use
of memory compared to the limit. Percentage of the node memory used by a pod is usually a bad
indicator as it gives no indication on how close to the limit the memory usage is. In Kubernetes, limits
are applied to containers, not pods, so monitor the memory usage of a container vs. the limit of that
container.

Find these metrics in Sysdig Monitor in the dashboard: Containers > Container resource usage

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 93

Kubernetes OOM kill due to limit overcommit
Memory requests are granted to the containers so they can always use that memory, right? Well, it’s
complicated. Kubernetes will not allocate pods that sum to more memory requested than memory
available in a node. But limits can be higher than requests, so the sum of all limits can be higher than
node capacity. This is called “overcommit” and it’s very common. In practice, if all containers use
more memory than requested, it can exhaust the memory in the node. This usually causes the death of
some pods in order to free some memory.

Memory management in Kubernetes is complex, as it has many facets. Many parameters enter the
equation at the same time:

 • Memory request of the container.
 • Memory limit of the container.
 • Lack of those settings.
 • Free memory in the system.
 • Memory used by the different containers.

With these parameters, a blender, and some math, Kubernetes elaborates a score. The last in the table
is killed or evicted. The pod can be restarted depending on the policy, so that doesn’t mean the pod
will be removed entirely.

Despite this mechanism, you can still finish with system OOM kills as Kubernetes memory management
runs every several seconds only. If the system memory fills too quickly, the system can kill Kubernetes
control processes, making the node unstable. This scenario should be avoided as it will most likely
require a complicated troubleshooting process, ending with a root-cause analysis based on hypothesis
and a node restart.

In day-to-day operation, this means that in case of overcommitting resources, pods without limits will
often be killed, containers using more resources than requested have a chance to die, and guaranteed
containers will most likely be fine.

CPU throttling due to CPU limit
There are many differences on how CPU and memory requests and limits are treated in Kubernetes.
A container using more memory than the limit will most likely die, but using CPU can never be the
reason that Kubernetes kills a container. CPU management is delegated to the system scheduler, and it
uses two different mechanisms for the requests and the limits enforcement.

CPU requests are managed using the shares system. This means that the resources in the CPU are
prioritized depending on the value of shares. Each CPU core is divided into 1,024 shares and the
resources with more shares have more CPU time reserved. Be careful, because in moments of CPU
starvation, shares won’t ensure your app has enough resources as it can be affected by bottlenecks
and general collapse. If a container has a limit of 100m, the container will have 102 shares. These
values are only used for pod allocation. Monitoring the shares in a pod doesn’t give any idea of a
problem related to CPU throttling.

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 94

On the other hand, limits are treated differently. Limits are managed with the CPU quota system. This
works by dividing the CPU time in 100ms periods and assigning a limit on the containers with the
same percentage that the limit represents to the total CPU in the node.

If you set a limit of 100m, the process can use 10ms of each period of processing. The system will
throttle the process if it tries to use more time than the quota, causing possible performance issues. A
pod will never be terminated or evicted for trying to use more CPU than its quota. Rather, the system
will just limit the CPU.

If you want to know if your pod is suffering from CPU throttling, you have to look at the percentage
of the quota assigned that is being used. Absolute CPU use can be treacherous, as you can see in
the following graphs. CPU use of the pod is around 25%, but as that is the quota assigned, it is using
100% and consequently suffering CPU throttling.

Find these metrics in Sysdig Monitor in the dashboard: Kubernetes > Node status & performance

Find these metrics in Sysdig Monitor in the dashboard: Containers > Container CPU & Memory limits

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 95

There is a great difference between CPU and memory quota management. Regarding memory, a pod
without requests and limits is considered burstable and is the first of the list to OOM kill. With the
CPU, this is not the case. A pod without CPU limits is free to use all of the CPU resources in the node.
The CPU is there to be used, but if you can’t control which process is using your resources, you can
end up with a lot of problems due to CPU starvation of key processes.

Troubleshooting OOM Kill and CPU Throttling with Sysdig Monitor
Advisor is a tool integrated in Sysdig Monitor that allows you to easily spot and troubleshoot critical
common issues, like OOM Kill and CPU Throttling. Unlike what you usually had to do with traditional
troubleshooting, you don’t have to go to the CLI, and maybe to the internet, to dig deep on what
a certain error means. Thanks to the Advisor, everything that you may need to troubleshoot these
kinds of issues are already there, in a centralized console bringing all the data from your Kubernetes
clusters.

Using Sysdig’s Advisor can accelerate troubleshooting by up to 10 times.

The overview tab allows Sysdig users to check the current status of clusters and workloads at a
glance. Advisories are enabled and provided out-of-the-box, alerting Sysdig users of new issues in a
proactive way.

Every advisory has its own priority classification. This makes issues identification and valuation much
easier. Red issues are the ones with Higher priority, orange is the color for medium priorities, while
green was designated to the issues with lowest priority.

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 96

Advisor provides tons of data from your applications. This will help you to determine and find the
root cause of the issue. In order to fix the issue as soon as possible, Advisor provides some valuable
information, like:

 • Brief description about the error and how to fix it.
 • Problem occurrence, for valuing how this issue is impacting your business.
 • Resources usage data.
 • Suggestions in the form of possible remediations towards a quick resolution.
 • Live logs access from containers.
 • YAML inspect tool, to check the actual YAML definition of the Pod.
 • Etc.

Monitoring Kubernetes Workloads 97Kubernetes Monitoring Guide

Lessons learned
1. Knowing how to monitor resource usage in your workloads is of vital importance. This will allow

you to discover different issues that can affect the health of the applications running in the cluster.
2. Understanding that your resource usage can compromise your application and affect other

applications in the cluster is the crucial first step. You have to properly configure your quotas.
3. Monitoring the resources and how they are related to the limits and requests will help you set

reasonable values and avoid Kubernetes OOM kills. This will result in a better performance of all
the applications in the cluster, as well as a fair sharing of resources.

4. Your Kubernetes alerting strategy can’t just focus on the infrastructure layer. It needs to
understand the entire stack, from the hosts and Kubernetes nodes at the bottom, up to the top
where the application workloads and its metrics live.

5. Being able to leverage Kubernetes and cloud providers metadata to aggregate and segment
metrics and alerts will be a requirement for effective alerting across all layers.

Kubernetes Monitoring Guide Monitoring Kubernetes Workloads 98

06  

Conclusion
In this guide, we have presented:

 • The basics of Kubernetes monitoring
 • How to use Golden Signals
 • How to monitor Kubernetes infrastructure
 • How to monitor Kubernetes workloads
 • Useful alerts to use to become more proactive

We hope that you found this information useful as you navigate the best way to monitor your
Kubernetes workloads. Still, this can be a complex journey and Kubernetes monitoring can take
years to master. As you have seen with the examples in this guide, Sysdig tries to take some of this
complexity out of your way with our Sysdig Monitor product. With Sysdig Monitor, you can:

 • Easily instrument your Kubernetes environment.
 • Get granular details from system calls, along with Kubernetes context.
 • Correlate system, network, and custom metrics to the health of your Kubernetes workloads for

faster troubleshooting.
 • Quickly increase Kubernetes visibility with out-of-the-box dashboards and alerts.
 • Scale Prometheus to millions of metrics with long-term retention and PromQL compatibility.

A great place to learn about Kubernetes monitoring is the Sysdig blog, where our experts are always
posting new tips and recommendations. We encourage you to take advantage of our free trial to see if
Sysdig Monitor can help you meet your performance and availability goals.

The Sysdig Secure DevOps Platform converges security and compliance with performance and
capacity monitoring to create a secure DevOps workflow. It uses the same data to monitor and secure,
so you can correlate system activity with Kubernetes services. This enables you to identify where a
problem occurred and why it happened — and you can use this single source of truth to investigate
and troubleshoot performance and security issues. If you are also interested in learning how to secure
your Kubernetes environments, we have written a companion guide, called the Kubernetes Security
Guide, with detailed information about image scanning, control plane security, RBAC for Kubernetes,
and runtime security.

With both of these guides in hand, you will be well on your way to understanding how to both monitor
and secure your Kubernetes environments!

Kubernetes Monitoring Guide Conclusion 99

https://sysdig.com/products/monitor/
https://sysdig.com/blog
https://sysdig.com/company/free-trial/
https://sysdig.com/resources/ebooks/kubernetes-security-guide/
https://sysdig.com/resources/ebooks/kubernetes-security-guide/

Copyright © 2023 Sysdig, Inc.
All rights reserved. Guide-006 Rev. B 02/23.

Find out how Sysdig Monitor can
help you and your teams monitor
and troubleshoot cloud-native
applications in production. Contact
us for additional details about the
platform, or to arrange a personalized
demo. If you can’t wait request a 30
days trial account and try it for free.

sysdig.com/start-free

https://sysdig.com/start-free/

	_2klozciz4qv3
	_qjed5epw5yyb
	_10bf1igtykdx
	_sm2vfpfhm766
	_alj1m7t660to
	_a2uetx9b4nn
	_s1dvpknfss8r
	_xxuzn569yvvy
	_ege8q84eulte
	_u48raex9g541
	_sb3r3vc1bp4n
	_jqye0cs9ddyt
	_puqg0gryz8jt
	_rggb37oqhk2y
	_qq9rwdlv8th3
	_ua2rkqrgqmlr
	_4wwfdbe7ghot
	_98950te21yg0
	_mrwn2u7smerp
	_a3wk2j87jjzm
	_1ni7h6fit1ku
	_upreb8qqt1ya
	_836vbnki4msh
	_vrutgodvlqjh
	_twun7px88xx
	_gkle78i1zysg
	_863nndintfm
	_ve1o8ml7va0k
	_5d2nibjhnnwq
	_ez9dlv127szg
	_3qxl79ku6qqv
	_e52oof1lsrva
	_rakbs4jq24zd
	_ef1s20ulnd5t
	_mek5r3yq1qbf
	_j7vkls5q7j8z
	_op6d1k5hwd6f
	_lxpgpipi0639
	_1g8wm3x1hus
	_xtycyx35vftz
	_ibvi9fgq2mb6
	_vord0cxdknc1
	_sdxlsm2dw279
	_l95qalcym6u8
	_f27ip0ut1xsx
	_op4kajdpn7um
	_mz8k9nl4filg
	_5tkq1cue7smy
	_gj309rocs5q7
	_g3t2nm3ggrzn
	_px2jll77vjux
	_fdrh1bz5wqz4
	_jm30s9lsh8zw
	_rgjffm1pu63k
	_figjjodfs79m
	_aofjpq6f76p8
	_4cxgftlymzod
	_b6kzsj8ci3v4
	_db1w0vnz93uj
	_22qu0u4uuyav
	_wwjf6ae3bejc
	_7zzndvcicppd
	_g8v6y196787b
	_8xksr38h1olt
	_1oao3xjqyaz3
	_l7s2n5iz2erb
	_u9lf7jo9s6o0
	_5y3g7hdk2ecn
	_t1zhlgx6r025
	_9eil8axp2ojw
	_er2zgwk4o66m
	_visfifno0myp
	_dbt1ym53v9il
	_7s0kv5zhstel
	_4362vu5ntrs
	_1gwcxvyg15wp
	_x1brd0otw1rv
	_surg5ycitkmx
	_6pcuyz1pn3x3
	_kt6f8p4egv65
	_u2s4nsv07rv
	_8790hor3nahb
	_l0fb0d4nht1f
	_i2ng8pjogoof
	_zep3dg6c31j2
	_cqk3lzp4gc8v
	_p7pv9xmlhhgf
	_1vcrweqvjgf3
	_b3o3dgh8odzd
	_x1pl9alo2zc3
	About This Guide
	Intro to Kubernetes Monitoring
	Why is monitoring Kubernetes hard?
	Kubernetes increases infrastructure complexity
	Microservices architecture
	Cloud-native explosion and scale requirements
	It’s hard to see what’s inside containers

	Best practices for alerting on Kubernetes
	General alerting basics

	Use cases for Kubernetes monitoring
	Cluster Administrator: Monitoring Kubernetes clusters and nodes
	DevOps: Monitoring Kubernetes applications
	Monitoring Kubernetes deployments and pods

	Kubernetes monitoring tools
	cAdvisor
	Kubernetes metrics server
	Kubernetes Dashboard
	Kubernetes kube-state-metrics
	Kubernetes liveness and readiness probes
	Prometheus for Kubernetes monitoring
	Sysdig Monitor for Kubernetes

	Lessons learned

	Monitoring Kubernetes with Golden Signals
	Golden Signals, a standard for Kubernetes application monitoring
	Golden Signals metric: Latency explained
	Golden Signals metric: Errors explained
	Golden Signals metric: Traffic / connections explained
	Golden Signals metric: Saturation explained
	Golden Signals vs. RED method vs. USE method in Kubernetes

	Golden Signal Metrics Instrumentation in Kubernetes
	Instrumenting code with Prometheus metrics / custom metrics
	Sysdig eBPF system call visibility (no instrumentation)

	A practical example of Golden Signals in Kubernetes
	Alerting on application layer metrics
	Caveats and gotchas of Golden Signals in Kubernetes
	Lessons learned

	Monitoring Kubernetes Infrastructure and Core Components
	Monitoring Kubernetes Infrastructure
	Alerting on the host or Kubernetes node layer

	Control Plane
	Monitoring Kubernetes control plane in Sysdig Monitor
	How to monitor the Kubernetes API server
	How to monitor Kubelet
	How to monitor Controller Manager
	How to monitor etcd

	Alerting on the Kubernetes control plane
	Is Kubernetes etcd running?
	Is the Kubernetes API server running?
	Is the latency of Kubelet too high for the start of the pods?

	Lessons learned

	Monitoring Kubernetes Workloads
	Monitoring services running on Kubernetes
	Kubernetes workloads hierarchy
	Alerting on services running on Kubernetes

	Understanding Kubernetes limits and requests by example
	Resources
	Namespace quotas
	Explaining pod requests and limits
	Choosing pragmatic requests and limits
	Reducing wasted spending
	Cost monitoring and optimization

	Lessons learned
	How to troubleshoot Kubernetes OOM and CPU Throttle
	Kubernetes OOM problems
	OOM kill due to container limit reached
	Kubernetes OOM kill due to limit overcommit
	CPU throttling due to CPU limit
	Troubleshooting OOM Kill and CPU Throttling with Sysdig Monitor

	Lessons learned

	Conclusion

