
Kubernetes  
Security Guide



2

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

Table of Contents
3 
Introduction

4 
Kubernetes attack surface

5 
Securing your container images  
and CI/CD pipeline

12 
Securing Kubernetes control plane

30 
Understanding Kubernetes RBAC

39 
Security at the pod level: K8s security 
content, PSP, and network policies

58 
Securing workloads at runtime

70 
Conclusion



3

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

Introduction
Kubernetes has become the de facto operating system of the cloud. This rapid success is 
understandable, as Kubernetes makes it easy for developers to package their applications into 
portable microservices. However, Kubernetes can be challenging to operate. Teams often put off 
addressing security processes until they are ready to deploy code into production.

Kubernetes requires a new approach to security. After all, legacy tools and processes fall short 
of meeting cloud-native requirements by failing to provide visibility into dynamic container 
environments. Fifty-four percent of containers live for five minutes or less, which makes 
investigating anomalous behavior and breaches extremely challenging.

One of the key points of cloud-native security is addressing container security risks as soon as 
possible. Doing it later in the development life cycle slows down the pace of cloud adoption, while 
raising security and compliance risks.

The Cloud/DevOps/DevSecOps teams are typically responsible for security and compliance as 
critical cloud applications move to production. This adds to their already busy schedule to keep 
the cloud infrastructure and application health in good shape.

We’ve compiled this security guide to provide guidance on choosing your approach to security as 
you ramp up the use of containers and Kubernetes.

https://www.zdnet.com/article/technology-containers-short-lifespans-are-getting-even-shorter/


4

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

Kubernetes attack surface
Let’s first take a glance at a Kubernetes cluster to understand which elements you need to protect.

Node

Cluster

Control Plane
Components

Master Node

kube-apiserver

Container

Pod

Container Runtime

kubelet

APPAPP

A

B

C

D

Access via Kubernetes API Proxy etcd API

Exploit vulnerability in apps or 3rd party libraries

Access via API

Access to the servers or virtual machines

A

B

C

D

The first area to protect is your applications and libraries. Vulnerabilities in your base OS 
images for your applications can be exploited to steal data, crash your servers or scale privileges. 
Another component you need to secure are third-party libraries. Often, attackers won’t bother 
to search for vulnerabilities in your code because it’s easier to use known exploits in your 
applications libraries.

The next vector is the Kubernetes control plane - your cluster brain. Programs like the controller 
manager, etcd or kubelet, can be accessed via the Kubernetes API. An attacker with access to the 
API could completely stop your server, deploy malicious containers or delete your entire cluster.

Additionally, your cluster runs on servers, so access to them needs to be protected. Undesired 
access to these servers, or the virtual machines where the nodes run, will enable an attacker to 
have access to all of your resources and the ability to create serious security exposures.



5

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

cHAPter 1

Securing your container images  
and CI/CD pipeline
One of the final steps of the CI (Continuous Integration) pipeline involves building the 
container images that will be pulled and executed in our environment. Therefore, whether 
you are building Docker images from your own code or using unmodified third party images, 
it’s important to identify any known vulnerabilities that may be present in those images. This 
process is known as Docker vulnerability scanning.

Image scanning
Docker images are composed of several immutable layers, basically a diff over a base image 
that adds files and other changes. Each one is associated with a unique hash id:

Any new Docker image that you create will most likely be based on an existing image (FROM 
statement in the Dockerfile). That’s why you can leverage this layered design to avoid having 
to re-scan the entire image every time you make a new one, with a small change. If a parent 
image is vulnerable, any other images built on top of it will be vulnerable too.



6

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

The Docker build process follows a manifest (Dockerfile) that includes relevant security 
information that you can scan and evaluate including the base images, exposed ports, 
environment variables, entrypoint script, external installed binaries and more. By the way, don’t 
miss our Docker security best practices article for more hints in building your Dockerfiles.

In a secure pipeline, Docker vulnerability scanning should be a mandatory step of your CI/CD 
process, and any image should be scanned and approved before entering “Running” state in the 
production clusters.

What is image scanning
The Docker security scanning process typically includes:

• Checking the software packages, binaries, libraries, operative system files and more 
against well known vulnerabilities databases. Some Docker scanning tools have a 
repository containing the scanning results for common Docker images. These tools can be 
used as a cache to speed up the process.

• Analyzing the Dockerfile and image metadata to detect security sensitive configurations 
like running as privileged (root) user, exposing insecure ports, using based images tagged 
with “latest” rather than specific versions for full traceability, user credentials, etc.

• User defined policies, or any set of requirements that you want to check for every image. 
This includes software packages blacklists, base images whitelists, whether a SUID file 
has been set, etc.

You can classify and group the different security issues you might find in an image by assigning 
different priorities: a warning notification is sufficient for some issues, while others will be severe 
enough to justify aborting the build.

https://sysdig.com/blog/7-docker-security-vulnerabilities/


7

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

Sysdig Secure Container image 
scanning: Scan engine
Sysdig Secure Scan Engine addresses Docker vulnerability scanning as part of the Secure 
DevOps methodology. DevOps teams can use it as a centralized service for inspection and 
analysis while applying user-defined acceptance policies to allow automated validation and 
certification of container images.

• Scan Engine allows developers to perform detailed analysis on their container

• images, run queries, produce reports and define policies that can be used in CI/CD

• pipelines.

• Using Scan Engine, container images can be downloaded from Docker V2 compatible 
container registries, as well as analyzed and evaluated against user defined policies.

• It can be accessed directly through a RESTful API or via CLI.

• The scanning includes not just CVE-based security scans but also policy-based scans 
that can include checks around security, compliance, and operational best practices.

Scan Engine sources and endpoints

Scan Engine architecture is comprised of six components that can either be deployed in a single 
container or scaled out:

• API Service: Central communication interface that can be accessed by code, using a REST 
API, or directly, using the command line.

• Image Analyzer Service: Executed by the “worker”, these nodes perform the actual 
Docker image scanning.

• Catalog Service: Internal database and system state service.

• Queuing Service: Organizes, persists and schedules the engine tasks.

• Policy Engine Service: Policy evaluation and vulnerabilities matching rules.

• Kubernetes Webhook Service: Kubernetes-specific webhook service to validate images 
before they are spawned.

https://es.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures


8

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

External API Kubernetes  
WebhookAPIs

Catalog SimpleQueue Policy EngineState

WorkerAnalysis

Scan Engine architecture

Securing your CI/CD pipeline
DevOps has introduced some interesting concepts in the world of software development. “You 
code it, you run it” means that there are no longer two separated teams for development and 
operations. This indicates that there is a strong decoupling between the applications and the 
infrastructure in which they run. CI/CD concepts allow developers to deploy very fast and often. 
But with these new tools come new challenges. Security teams have lost control over many 
aspects of the systems running the applications, as the containers are now the atomic unit of 
working. A container is opaque in many regards, and security teams are no longer responsible 
for what it has installed. As long as many aspects of development have moved left in the 
workflow, security has to be moved left as well, creating Secure DevOps: You code it, you run it, 
you secure it.

Code

Security and 
Compliance Policies

DEV

SEC OPS

CICD

FAIL

WARN

PASS

SYSDIG SECURE ENGINE

PRE-DEPLOYMENT

 



9

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e This new responsibility of DevOps teams means there is a need for new tools and procedures to 

establish the new security processes. It is not enough to adapt old security operations; there are 
new requirements that need new tools.

Image scanning in CI/CD
Secure DevOps teams need to ensure that the containers they’re shipping are secure. The best 
way to do this is to include image scanning in the CI/CD pipelines. Some of the benefits of this 
are:

• Early detection of security issues. This allows quicker responses.

• If the issue is detected in the pipeline, the problem is much easier to fix.

• The problems are detected before deployments. This means the chances of outages due 
to security incidents are reduced by a significant percentage.

Like most things in IT, the earlier you detect container security issues, the easier they are to fix 
without further consequences.

Embedding container security in your build pipeline is a best practice for several reasons:

• The vulnerabilities will never reach your production clusters, or even worse, a client 
environment.

• You can adopt a secure-by-default approach by knowing any image available in your 
Docker container registry has already passed all of the security policies you have defined 
for your organization, as opposed to manually checking container and Kubernetes 
compliance after-the-fact.

• The original container builder will be (almost) instantly informed when the developer still 
has all the context. The issue will be substantially easier to fix, rather than if it was found 
by another person months later.

Inline scanning

Some security requirements restrict access to some registries in various environments in order to 
keep them safe. These access or permission restrictions can make image scanning tricky or even 
impossible. Inline scanning allows you to scan the images locally, at build time, without using any 
registry.

Metadata from the analysis can be uploaded to a database or security backend in order to store 
the information and use it for image deployment control. 



10

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e Inline image scanning provides several benefits over traditional image scanning within the 

registry:

• The analysis is performed inline (locally) on the runner. This means that in case 
vulnerabilities are found, you can prevent the image from being published at all.

• As verifications are done locally, the image contents are not sent anywhere for analysis, 
so any confidential information is kept under control without being exposed. During the 
analysis, only metadata information is extracted from the image.

• The metadata obtained from the analysis can be reevaluated later if new vulnerabilities 
are discovered or policies are modified, all without requiring a new scanning of the image.

• You can set policies to enforce and adhere to various container compliance standards 
(like NIST 800-190 and PCI) and provide checks for containers running in Kubernetes and 
Openshift.

Integrating image scanning with Jenkins

Jenkins is an open source automation server with a plugin ecosystem that supports the typical 
tools that are a part of your delivery pipelines. Jenkins helps to automate the CI/CD process. Scan 
Engine has been designed to plug seamlessly into a CI/CD pipeline; a developer commits code 
into the source code management system, like Git. This change triggers Jenkins to start a build 
which creates a container image, etc.

In a typical workflow, this container image is then run through various automated testing. If an 
image does not pass the Docker security scanning (doesn’t meet the organization’s requirements 
for security or compliance), then it doesn’t make sense to invest the time required to perform 
automated tests on the image. A better approach is to “learn fast” by failing the build and 
returning the appropriate reports back to the developer to address the issues.

Docker scanner with Jenkins

You can use the “Sysdig Secure Container Image Scanner plugin” available in the official plugin 
list that you can access via the Jenkins interface.

You can further read  how to integrate image scanning in Jenkins in this article.

https://sysdig.com/products/secure/container-compliance/
https://sysdig.com/blog/docker-image-scanning/#cicdsecuritydockersecurityscannerwithjenkins


11

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e Integrating image scanning with Azure pipelines

Azure DevOps gives teams tools like version control, reporting, project management, automated 
builds, lab management, testing and release management. Azure Pipelines automates the 
execution of CI/CD tasks, like building the container images when a commit is pushed to your git 
repository or performing vulnerability scanning on the container image.

Image scanning allows DevOps teams to shift left security, detecting known vulnerabilities and 
validating container build configuration early in their pipelines. This is done before the containers 
are deployed in production or images are pushed into any container registry. This allows you to 
detect and fix issues faster, improving delivery to production time.

You can find here detailed information on how to introduce image scanning in Azure pipelines.

Integrating image scanning with AWS CodePipeline and AWS CodeBuild

AWS provides several tools for DevOps teams: CodeCommit for version control, CodeBuild for 
building and testing code, and CodeDeploy for automatic code deployment. The block on top of 
all of these tools is CodePipeline, which allows them to visualize and automate these different 
stages.

Image Scanning for AWS CodePipeline raises the confidence that DevOps teams have in the 
security of their deployments, detecting known vulnerabilities and validating container build 
configuration early in their pipelines. By detecting those issues before the images are published 
into a container registry or deployed in production, fixes can be applied faster and delivery to 
production time improves.

You can learn more about how to use inline scanning with AWS CodePipeline in this article.

Integrating image scanning with Bamboo

Atlassian Bamboo is a continuous integration and delivery server integrated with Atlassian 
software development and collaboration platform. Some of the features that distinguish Bamboo 
from similar CI/CD tools are its native integration with other Atlassian products (like Jira project 
management and issue tracker), improved support for Git workflows (branching and merging) 
and flexible scalability of worker nodes using ephemeral Amazon EC2 virtual machines.

Learn more in the article: Integrating Sysdig Secure with Atlassian Bamboo CI/CD.

Integrating image scanning with Gitlab CI/CD

Gitlab CI/CD is an open source continuous integration and delivery server integrated with the 
Gitlab software development and collaboration platform.

Once you have configured Gitlab CI/CD for your repo, every time a developer pushes a commit to 
the tracked repository branches, the pipeline scripts will be automatically triggered.

You can use these pipelines to automate many processes. Common tasks include QA testing, 
building software distribution artifacts (like Docker images or linux packages) or, as is the case 
for this article, checking compliance with security policies.

Learn more in the article: Integrating Gitlab CI/CD with Sysdig Secure.

https://sysdig.com/blog/image-scanning-azure-pipelines/#
https://sysdig.com/blog/image-scanning-azure-pipelines/
https://sysdig.com/blog/image-scanning-aws-codepipeline-codebuild/
https://sysdig.com/blog/bamboo-sysdig-secure/
https://sysdig.com/blog/gitlab-ci-cd-image-scanning/


12

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

cHAPter 2

Securing Kubernetes control plane
In addition to configuring the Kubernetes security features, a fundamental part of Kubernetes 
security is securing sensitive Kubernetes components such as kubelet and internal Kubernetes 
etcd. We also shouldn’t forget the common external resources, like the Docker registry, that 
we pull images from. In this part, we will learn best practices on how to secure the Kubernetes 
kubelet and the Kubernetes etcd cluster, as well as how to configure a trusted Docker registry.

Kubelet security
The kubelet is a fundamental piece of any Kubernetes deployment. It’s often described as the 
“Kubernetes agent” software, and is responsible for implementing the interface between the 
nodes and the cluster logic.

The main task of a kubelet is managing the local container engine (i.e. Docker) and ensuring that 
the pods described in the API are defined, created, run and remain healthy; and also that they are 
destroyed when appropriate.

There are two different communication interfaces to be considered:

• Access to the Kubelet REST API from users or software (typically just the Kubernetes API 
entity).

• Kubelet binary accessing the local Kubernetes node and Docker engine.

Kubernetes api Kubelet Kubernetes node / 
Docker daemon

These two interfaces are secured by default using:

• Security related configuration (parameters) passed to the kubelet binary – Next section 
(Kubelet security – access to the kubelet API).

• NodeRestriction admission controller – See below Kubelet security – kubelet access to 
Kubernetes API.

• RBAC to access the kubelet API resources – See below RBAC example, accessing the 
kubelet API with curl.

https://kubernetes.io/docs/reference/generated/kubelet/


13

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

Access to the kubelet API
The kubelet security configuration parameters are often passed as arguments to the binary exec. 
For newer Kubernetes versions (1.10+) you can also use a kubelet configuration file. Either way, 
the parameters syntax remains the same.

Let’s use this example configuration as reference:

/home/kubernetes/bin/kubelet 

–v=2 

–kube-

reserved=cpu=70m,memory=1736Mi 

–allow-privileged=true 

–cgroup-root=/ 

–pod-manifest-path=/etc/kubernetes/manifests 

–experimental-mounter-path=/home/kubernetes/containerized_mounter/mounter 

–experimental-check-node-capabilities-before-mount=true –cert-dir=/var/lib/

kubelet/pki/ 

–enable-debugging-handlers=true 

–bootstrap-kubeconfig=/var/lib/kubelet/bootstrap-kubeconfig 

–kubeconfig=/var/lib/kubelet/kubeconfig 

–anonymous-auth=false 

–authorization-mode=Webhook 

–client-ca-file=/etc/srv/kubernetes/pki/ca-certificates.crt 

–cni-bin-dir=/home/kubernetes/bin 

–network-plugin=cni 

–non-masquerade-cidr=0.0.0.0/0 

–feature-gates=experimentalcriticalPodAnnotation=true

Verify the following Kubernetes security settings when configuring kubelet parameters:

• anonymous-auth is set to false to disable anonymous access (it will send 401 
Unauthorized responses to unauthenticated requests).

• kubelet has a --client-ca-file flag, providing a CA bundle to verify client certificates.

• --authorization-mode is not set to AlwaysAllow, as the more secure Webhook mode will 
delegate authorization decisions to the Kubernetes API server.

• --read-only-port is set to 0 to avoid unauthorized connections to the read-only 
endpoint (optional).

https://kubernetes.io/docs/reference/generated/kubelet/
https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/


14

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

Kubelet access to Kubernetes API
As we mentioned in the first part of this guide, the level of access granted to a kubelet is 
determined by the NodeRestriction Admission Controller (on RBAC-enabled versions of 
Kubernetes, stable in 1.8+).

kubelets are bound to the system:node Kubernetes clusterrole.

If NodeRestriction is enabled in your API, your kubelets will only be allowed to modify their own 
Node API object, and only modify Pod API objects that are bound to their node. It’s just a static 
restriction for now.

You can check whether you have this admission controller from the Kubernetes nodes executing 
the apiserver binary:

$ ps aux | grep apiserver | grep admission-control

--admission-control=initializers,namespaceLifecycle,Limitranger,serviceAcc

ount,PersistentVolumeLabel,defaultstorageclass,defaulttolerationseconds,no

derestriction,resourceQuota

RBAC example, accessing the kubelet API with curl
Typically, only the Kubernetes API server will need to use the kubelet REST API. As we mentioned 
before, this interface needs to be protected as you can execute arbitrary pods and exec 
commands on the hosting node.

You can try to communicate directly with the kubelet API from the node shell:

# curl  -k https://localhost:10250/pods

Forbidden (user=system:anonymous, verb=get, resource=nodes, 

subresource=proxy)

Kubelet uses RBAC for authorization and it’s telling you that the default anonymous system 
account is not allowed to connect.

You need to impersonate the API server kubelet client to contact the secure port:

https://kubernetes.io/docs/admin/admission-controllers/#noderestriction
https://sysdig.com/blog/kubernetes-security-psp-network-policy/#kubernetesadmissioncontrollers
https://kubernetes.io/docs/admin/authorization/rbac/#role-and-clusterrole
https://kubernetes.io/docs/admin/admission-controllers/#noderestriction
https://kubernetes.io/docs/admin/admission-controllers/#noderestriction
https://medium.com/handy-tech/analysis-of-a-kubernetes-hack-backdooring-through-kubelet-823be5c3d67c
https://medium.com/handy-tech/analysis-of-a-kubernetes-hack-backdooring-through-kubelet-823be5c3d67c
https://sysdig.com/blog/kubernetes-security-rbac-tls/


15

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

# curl --cacert /etc/kubernetes/pki/ca.crt --key /etc/kubernetes/pki/

apiserver-kubelet-client.key --cert /etc/kubernetes/pki/apiserver-kubelet-

client.crt -k https://localhost:10250/pods | jq .

{ 

  “kind”: “PodList”, 

  “apiVersion”: “v1”, 

  “metadata”: {}, 

  “items”: [ 

    { 

      “metadata”: { 

        “name”: “kube-controller-manager-kubenode”, 

        “namespace”: “kube-system”, 

...

Your port numbers may vary depending on your specific deployment method and initial 
configuration.

Kubernetes API audit and security log
Kube-apiserver provides a security-relevant chronological set of records documenting the 
sequence of activities that have affected the system by individual users, administrators or other 
components. It allows the cluster administrator to answer the following questions:

• What happened?

• When did it happen?

• Who initiated it?

• What was affected?

• Where was it observed?

• From where was it initiated?

• To where was it going?

The API audit output, if correctly filtered and indexed, can become an extremely useful resource 
for the forensics, early incident detection and traceability of your Kubernetes cluster.

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/


16

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e The audit log uses the JSON format by default, a log entry has the following aspect:

{ 

    “kind”: “event”, 

    “apiVersion”: “audit.k8s.io/v1beta1”, 

    “metadata”: { 

        “creationtimestamp”: “2018-10-08t08:26:55Z” 

    }, 

    “level”: “request”, 

    “timestamp”: “2018-10-08t08:26:55Z”, 

    “auditid”: “288ace59-97ba-4121-b06e-f648f72c3122”, 

    “stage”: “responsecomplete”, 

    “requesturi”: “/api/v1/pods?limit=500”, 

    “verb”: “list”, 

    “user”: { 

        “username”: “admin”, 

        “groups”: [“system:authenticated”] 

    }, 

    “sourceiPs”: [“10.0.138.91”], 

    “objectref”: { 

        “resource”: “pods”, 

        “apiVersion”: “v1” 

    }, 

    “responsestatus”: { 

        “metadata”: {}, 

        “code”: 200 

    }, 

    “requestreceivedtimestamp”: “2018-10-08t08:26:55.466934Z”, 

    “stagetimestamp”: “2018-10-08t08:26:55.471137Z”, 

    “annotations”: { 

        “authorization.k8s.io/decision”: “allow”, 

        “authorization.k8s.io/reason”: “rbAc: allowed by clusterrolebinding 

“admin-cluster-binding” of clusterrole “cluster-admin” to user “admin”” 

    } 

}

From this document you can easily extract the user (or serviceaccount software entity) that 
originated the request, the request URI, API objects involved, timestamp and the API response, 
allow, in this example.

You can define which events you want to log passing a YAML-formatted policy configuration to 
the API executable.

For instance, if you configure append the following parameters to the kube-apiserver command 
line:

   - --audit-log-path=/var/log/apiserver/audit.log

   - --audit-policy-file=/extra/policy.yaml



17

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e The API will load the configuration from the path above and output the log to /var/log/

apiserver/audit.log

There are many other flags you can configure to tune the audit log, like log rotation, max time to 
live, and more. It’s important to note that you can also configure your API to send audit entries, 
using a webhook trigger, in case you want to store and index them using an external engine (like 
ElasticSearch or Splunk).

Audit log policies configuration
The YAML policies file has the following structure:

apiVersion: audit.k8s.io/v1beta1 

kind: Policy 

omitstages:

  - “requestreceived” 

rules: 

  - level: request 

    users: [“admin”] 

    resources: 

      - group: “” 

        resources: [“*”] 

  - level: request 

    user: [“system:anonymous”] 

    resources: 

      - group: “” 

        resources: [“*”]

Using this config, you can match the different keys of a log entry to a specific value, set of values 
or a catch-all wildcard. The example above will log the requests made by the admin user as well 
as any request made by an anonymous system user.

If you create a new user (see above) that is not associated to any Role or ClusterRole, and then 
try to get the list of pods:

kubectl get pods

no resources found.

error from server (Forbidden): pods is forbidden: user “system:anonymous” 

cannot list pods in the namespace “default”

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/#webhook-backend


18

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e The log will register the request:

{ 

    “kind”: “event”, 

    “apiVersion”: “audit.k8s.io/v1beta1”, 

    “metadata”: { 

        “creationtimestamp”: “2018-10-08t10:00:20Z” 

    }, 

    “level”: “request”, 

    “timestamp”: “2018-10-08t10:00:20Z”, 

    “auditid”: “5fc5eab3-82f5-480f-93d2-79bfb47789f1”, 

    “stage”: “responsecomplete”, 

    “requesturi”: “/api/v1/namespaces/default/pods?limit=500”, 

    “verb”: “list”, 

    “user”: { 

        “username”: “system:anonymous”, 

        “groups”: [“system:unauthenticated”] 

    }, 

    “sourceiPs”: [“10.0.141.137”], 

    “objectref”: { 

        “resource”: “pods”, 

        “namespace”: “default”, 

        “apiVersion”: “v1” 

    }, 

    “responsestatus”: { 

        “metadata”: {}, 

        “status”: “Failure”, 

        “reason”: “Forbidden”, 

        “code”: 403 

    }, 

    “requestreceivedtimestamp”: “2018-10-08t10:00:20.605009Z”, 

    “stagetimestamp”: “2018-10-08t10:00:20.605191Z”, 

    “annotations”: { 

        “authorization.k8s.io/decision”: “forbid”, 

        “authorization.k8s.io/reason”: “” 

    } 

}

You have a comprehensive audit policy example here. Rule ordering is important because 
decision is taken in a top-down first match fashion.

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/#audit-policy


19

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

Extending the Kubernetes API using security  
admission controllers
Kubernetes was designed to be highly extensible, offering you the possibility to plug any security 
software that you might want to use to process and filter the workloads launched in your system.

A feature that makes admission webhooks especially interesting for the security compliance is 
that they are evaluated before actually executing the requests. That means you can block the 
access to any suspicious software before the pods are even created.

You can create your own admission controller implementing the webhook interface defined by 
Kubernetes. 

They can also block pods from running if the cluster is out of resources or if the images are not 
secure. And, as we saw earlier, they can even mutate the request to tweak the resources request 
from a pod.

Webhook
Provider

Image Definition

Validation DecisionValidation Decision

Persist to database
(only if validated)

Deployment creation
request

Kubernetes
API response

Kubernetes API

Image
Scanner

Security
Policies

Again, all of this is done before the request is persisted in etcd, which means before it is 
executed. This is what makes Kubernetes admissions controllers such a perfect candidate to 
deploy preventive security controls on your cluster.

There are three specific admission controllers let you expand the API functionality via webhooks:

• ImagePolicyWebhook to decide if an image should be admitted.

• MutatingAdmissionWebhook to modify a request.

• ValidatingAdmissionWebhook to decide whether the request should be allowed to run 
at all.



20

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e Let’s imagine we want to implement an ImagePolicyWebhook.

First, we’ll need to make sure that the webhook is enabled when we start kube-apiserver:

kube-apiserver --enable-admission-plugins=imagePolicyWebhook …

We also need to configure the webhook server that will be called by the API server:

kube-apiserver --admission-control-config-file=admission-config.yaml …

An example admission-config.yaml contains an AdmissionConfiguration object:

apiVersion: apiserver.config.k8s.io/v1

kind: AdmissionConfiguration

plugins:

- name: imagePolicyWebhook

  configuration:

    imagePolicy:

      kubeConfigFile: <path-to-kubeconfig-file>

      allowttL: 50

      denyttL: 50

      retrybackoff: 500

      defaultAllow: true

And then, the webhook server is configured into a kubeconfig file:

# clusters refers to the remote service.

clusters:

- name: name-of-remote-imagepolicy-service

  cluster:

    certificate-authority: /path/to/ca.pem    # CA for verifying the remote 

service.

    server: https://images.example.com/policy # urL of remote service to 

query. Must use ‘https’.

# users refers to the API server’s webhook configuration.

users:

- name: name-of-api-server

  user:

    client-certificate: /path/to/cert.pem # cert for the webhook admission 

controller to use

    client-key: /path/to/key.pem          # key matching the cert

Please refer to the ImagePolicyWebhook documentation for a detailed description of the 
configuration options and alternatives.

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#imagepolicywebhook


21

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e We can now code our HTTP server to attend the webhook requests.

Once the Kubernetes API server receives a request for a deployment, our webhook will receive a 
JSON request similar to:

{

  “apiVersion”:”imagepolicy.k8s.io/v1alpha1”,

  “kind”:”imagereview”,

  “spec”:{

    “containers”:[

      {

        “image”:”myrepo/myimage:v1”

      }

    ],

    “namespace”:”mynamespace”

  }

}

Then, you can process this request on your server. For example, checking that image against your 
image scanner to ensure that it doesn’t contain vulnerabilities or misconfigurations.

In our example, that image does not conform with our company policies, so we would respond 
with the following JSON payload:

{

  “apiVersion”: “imagepolicy.k8s.io/v1alpha1”,

  “kind”: “imagereview”,

  “status”: {

    “allowed”: false,

    “reason”: “image runs as root”

  }

}

Because we have rejected one part of the request, the entire API request is immediately rejected, 
the image won’t be deployed, and an error is returned to the end-user.

Additionally, Sysdig Secure Scan Engine provides a webhook service specifically designed to 
enable this feature.

Sysdig’s Admission Controller builds upon Kubernetes and enhances the capacity of the image 
scanner to check images for Common Vulnerabilities and Exposures (CVEs), misconfigurations, 
outdated images, etc., elevating the scan policies from detection to actual prevention. Container 
images that do not fulfill the configured admission policies will be rejected from the cluster before 
being assigned to a node and allowed to run.



22

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

Securing Kubernetes etcd
etcd is a key-value distributed database that persists Kubernetes state. The etcd configuration 
and upgrading guide stresses the security relevance of this component:

“Access to etcd is equivalent to root permission in the cluster so ideally, only the API server should 
have access to it. Considering the sensitivity of the data, it is recommended to grant permission 
to only those nodes that require access to etcd clusters.”

You can enforce these restrictions in three different (complementary) ways:

• Regular Linux firewalling (iptables/netfilter, etc).

• Run-time access protection.

• PKI-based authentication + parameters to use the configured certs.

PKI-based authentication for etcd
Ideally, you should create two sets of certifspec:

  containers:

  - name: private-reg-container

    image: <your-private-image>

  imagePullsecrets:

  - name: regcredicate and key pairs to be used exclusively for etcd. One 

pair will verify member to member connections and the other pair will 

verify Kubernetes APi to etcd connections.

Conveniently, the etcd project provides these scripts to help you generate the certificates.

Once you have all of the security artifacts (certificates, keys and authorities), you can secure etcd 
communications using the following configuration flags:

etcd peer-to-peer TLS
This will configure authentication and encryption between etcd nodes. To configure etcd with 
secure peer to peer communication, use the flags:

• –peer-key-file=<peer.key>

• –peer-cert-file=<peer.cert>

• –peer-client-cert-auth

• –peer-trusted-ca-file=<etcd-ca.cert>

https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://github.com/coreos/etcd/tree/master/hack/tls-setup


23

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

Kubernetes API to etcd cluster TLS
To allow Kubernetes API to communicate with etcd, you will need:

• etcd server parameters:

 ̸   –cert-file=

 ̸   –key-file=

 ̸   –client-cert-auth

 ̸   –trusted-ca-file= (can be the same you used for peer to peer)

• Kubernetes API server parameters:

 ̸   –etcd-certfile=k8sclient.cert

 ̸   –etcd-keyfile=k8sclient.key

It may seem like a lot of parameters at first sight, but it’s just a regular PKI design.

Using a trusted Docker registry
If you don’t specify otherwise, Kubernetes will just pull the Docker images from the public 
registry Docker Hub. This is fine for testing or learning environments, but it’s not convenient 
for production, as you probably want to keep images and its content private within your 
organization.

Allowing users to pull images from a public registry is essentially giving access inside your 
Kubernetes cluster to any random software found on the Internet. Most of the popular Docker 
image publishers curate and secure their software, however, you don’t have any guarantee that 
your developers are going to pull from trusted authors only.

Providing a trusted repository using cloud services (Docker Hub subscription, Quay.io, Google/
AWS/Azure also provide their own service) or locally rolling your own (Docker registry, Portus or 
Harbor, etc), are two ways to solve this problem.

You will pre-validate and update every image in your registry. Apart from any QA and testing 
pipeline you regularly apply to your software, this usually means scanning your Docker images 
for known vulnerabilities and bad security practices.

Assuming you already have a pre-populated trusted repository, you need to tell Kubernetes how 
to pull from it and ideally, forbid any other unregistered images.

Configure private Docker registry in Kubernetes

Kubernetes provides a convenient way to configure a private Docker registry and store access 
credentials, including server URL, as a secret:

kubectl create secret docker-registry regcred --docker-server=<your-

registry-server> --docker-username=<your-name> --docker-password=<your-

pword> --docker-email=<your-email>

http://port.us.org/
https://vmware.github.io/harbor/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/


24

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e This data will be base64 encoded and included inline as a field of the new secret:

{ 

    “apiVersion”: “v1”, 

    “data”: { 

        “.dockercfg”: 

“eyJyZWdpc3ryes5sb2nhbci6eyJ1c2VybmFtZsi6impvaG5kb3ciLcJwyXnzd29yZci 

6innly3JldHbhc3n3b3JkiiwiZW1haWwiOiJqb2huQGrvZsisimF1dGgiOiJhbtlvym1 

sdmr6cHpaV055Wlhsd1lytnpkMjl5Wke9PsJ9fQ==”

    },

    “kind”: “secret”,

    “metadata”: {

        “creationtimestamp”: “2018-04-08t19:13:52Z”,

        “name”: “regcred”,

        “namespace”: “default”,

        “resourceVersion”: “1752908”,

        “selfLink”: “/api/v1/namespaces/default/secrets/regcred”,

        “uid”: “f9d91963-3b60-11e8-96b4-42010a800095”

    },

    “type”: “kubernetes.io/dockercfg”

}

Then, you just need to import this secret using the label imagePullSecrets in the pod definition.

spec: 

  containers: 

  - name: private-reg-container 

    image: <your-private-image> 

  imagePullsecrets: 

  - name: regcred

You can also associate a serviceAccount with imagePullSecrets. The deployments / pods using 
such serviceAccount will have access to the secret containing registry credentials.

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#add-imagepullsecrets-to-a-service-account


25

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

Kubernetes trusted image collections: 
Banning non trusted registry
Once you have created your trusted image repository and Kubernetes pod deployments are 
pulling from it, the next security measure is to forbid pulling from any non-trusted source.

There are several, complementary ways to achieve this. You can, for example, use 
ValidatingAdmissionWebhooks. This way, the Kubernetes control plane will delegate image 
validation to an external entity.

You have an example implementation here, using Grafeas to only allow container images signed 
by a specific key, configurable via a configmap.

Using our Sysdig Secure, you can also create an image whitelist based on image sha256 hash 
codes. Any non-whitelisted image will fire an alarm and container execution will be immediately 
stopped.

Kubernetes TLS certificates rotation and expiration
Modern Kubernetes deployments and managed cloud Kubernetes providers will properly 
configure TLS, so the communication between the API server and the kubelets, users and pods 
is already secured. Thus, we will only focus on the maintenance and rotation aspects of these 
certificates.

Setting a certificate rotation policy from the start will protect you against the usual key 
mismanagement or leaking that is bound to happen over long periods of time, an occurrence that 
is often overlooked.

Let’s explore three Kubernetes TLS certificate rotation and expiration scenarios:

• kubelet TLS certificate rotation & expiration.

• serviceAccount token rotation.

• Kubernetes user cert rotation & expiration.

Note that the current TLS implementation in the Kubernetes API has no way to verify a certificate 
besides checking the origin. Neither CRL (Certificate Revocation List) nor OCSP (Online 
Certificate Status Protocol) are implemented. This means that a lost or exposed certificate will be 
able to authenticate to the API as long as it hasn’t expired.

There are a few ways to mitigate the impact:

• issue (very) short lived certificates to keep the period of potential exposure small.

• remove the permissions in Kubernetes RBAC. You cannot reuse the username until the 
certificate has expired.

• recreate the certificate authority and issue new certificates to all active users.

• consider OIDC (OpenID Connect) as a alternative authentication method.

https://sysdig.com/blog/kubernetes-security-psp-network-policy/
https://github.com/kelseyhightower/grafeas-tutorial
https://sysdig.com/product/secure/
https://en.wikipedia.org/wiki/Certificate_revocation_list
https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol
https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol
https://kubernetes.io/docs/admin/authentication/#openid-connect-tokens


26

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

Kubernetes kubelet TLS certificate rotation
The kubelet serves as the bridge between the node operating system and the cluster logic, and 
thus is a critical security component.

By default, the kubelet executable will load its certificates from a regular directory that is passed 
as argument:

--cert-dir=/var/lib/kubelet/pki/ 

 

/var/lib/kubelet/pki# ls 

kubelet-client.crt  kubelet-client.key  kubelet.crt  kubelet.key

You can regenerate the certs manually using the root CA of your cluster. However, starting from 
Kubernetes 1.8, there is an automated approach at your disposal.

You can instruct your kubelets to renew their certificates automatically as the expiration date 
approaches using the config flags:

• --rotate-certificates

and

• --feature-gates=RotateKubeletClientCertificate=true

By default, the kubelet certificates expire in one year. You can tune this parameter passing the 
flag --experimental-cluster-signing-duration to the kube-controller-manager binary.

Kubernetes serviceAccount token rotation
Every time you create a serviceAccount, a Kubernetes secret storing its auth token is 
automatically generated.

 $ kubectl get serviceaccounts 

nAMe             secrets   AGe 

default          1         26d 

falco-account    1         18d 

sysdig-account   1         12d 

 

$ kubectl get secrets 

nAMe                         tyPe                                 dAtA  AGe 

default-token-f2lmn          kubernetes.io/service-account-token   3     6d 

falco-account-token-jvgtz    kubernetes.io/service-account-token   3     8d 

sysdig-account-token-9sjgd   kubernetes.io/service-account-token   3    12d

https://kubernetes.io/docs/tasks/tls/certificate-rotation/#enabling-client-certificate-rotation
https://kubernetes.io/docs/reference/generated/kube-controller-manager/


27

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e You can request new tokens from the API and replace the old ones:

$ kubectl delete secret falco-account-token-jvgtz 

$ cat > /tmp/rotate-token.yaml <<EOF 

apiVersion: v1 

kind: secret 

metadata: 

  name: falco-account-token 

  annotations: 

    kubernetes.io/service-account.name: falco-account 

type: kubernetes.io/service-account-token 

eOF 

$ kubectl create -f /tmp/rotate-token.yaml

If you describe the new secret, you will be able to see the new token string. Note that existing 
pods using this serviceAccount will continue using the old (invalid) token, so you may want to 
plan a rolling update over the affected pods to start using the new token.

Updating serviceAccount tokens is not as common as updating user certs, passwords, etc. There 
is no fully automated way of doing this other than using the Kubernetes API at the moment. 
Consider whether or not this security artifact rotation makes sense for your use cases.

Kubernetes user TLS certificate rotation
As we have seen in the ‘How to create a Kubernetes user’ example, you can assign a certificate 
to a user, but there is no User API object per se.

When you sign the user certificate using Kubernetes root CA, you can assign an expiration date 
using the -days parameter to enforce routinary rotation:

openssl x509 -req -in john.csr -cA /etc/kubernetes/pki/ca.crt -cAkey /etc/

kubernetes/pki/ca.key -cAcreateserial -days 365 -out john.crt 

 

$ openssl x509 -in john.crt -text 

Certificate: 

    data: 

        Version: 1 (0x0) 

        serial number: 11309651818125161149 (0x9cf3f46850b372bd) 

    signature Algorithm: sha256WithrsAencryption 

        issuer: cn=kubernetes 

        Validity 

            not before: Apr  3 10:43:25 2018 GMt 

            not After : Apr  3 10:43:25 2019 GMt



28

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e Then, you can replace the old user certificate using the config set-credentials command:

$ kubectl config set-credentials john --client-certificate=/home/newusers/

john.crt --client-key=/home/newusers/john.key

Securing Kubernetes hosts
While the scope of this guide is securing Kubernetes, a lot of people tend to forget that 
Kubernetes clusters run in hosts. A security breach in a host will compromise everything you are 
running there, including Kubernetes and the workloads inside.

There is a lot of literature about securing hosts: secure networking, security tools like SELinux or 
AppArmor, IPtables, etc.

We are not trying to cover everything here, but there are some important things related to 
Kubernetes that can make it much easier to defend your hosts against undesired intrusions.

Using a minimal host OS
Your hosts only mission should be to run Kubernetes. Everything else is only increasing the 
chances of being attacked. Each additional library, program, service or process running is 
increasing the attack surface.

In order to limit risk and reduce attack vectors, it is recommended to use one of the different 
options of minimal OS designed to run Kubernetes. There are several options like CoreOS, Red 
Hat Atomic or Rancher. These distributions have specific libraries and dependencies required to 
run containers, and nothing else.

Update system patches
Old versions of libraries, kernels and applications are some of the main vulnerabilities a host can 
have. Once a version is known vulnerable, the exploits can be easily automatized and used at 
great scale. Updates and security patches must be applied in a systematic and consistent way to 
ensure that all of your hosts are as safe as possible.

You should also check that the host OS you are using is receiving the latest security updates. 
Sometimes distributions stop supporting old versions and your systems can become vulnerable.

https://coreos.com/os/docs/latest/
https://www.redhat.com/en/resources/enterprise-linux-atomic-host-datasheet
https://www.redhat.com/en/resources/enterprise-linux-atomic-host-datasheet
https://rancher.com/rancher-os/


29

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

Node recycling
In cloud native environments, hosts are born to be ephemeral. A good strategy to recycle your 
nodes has several advantages:

• It is a good way to clean hosts that could have been compromised.

• It helps you keep your system up to date if you update the image when you spawn new 
nodes.

• It will help prevent node failing due to fatigue, like disks filling with logging, problems in 
updates, etc.

• It will prepare your infrastructure to kill hosts and spawn new ones. This will be a good 
test of fault tolerance.

Running CIS benchmark security tests
Even when you have meticulously configured your Kubernetes cluster following security best 
practices, there are a lot of factors you may have overlooked. CIS (Center for Internet Security) 
has published its benchmarks that you can pass to your clusters and ensure that they comply 
with the set of rules of the CIS recommendations. 

There are several benchmarks that can be of help:

• CIS Kubernetes Benchmark: Checks Kubernetes setup and best security practices to 
ensure the cluster is properly configured to be safe. 

• CIS Docker Benchmark: Assesses the configuration of docker service running in the 
machine (assuming you are using docker, of course).

• There are different OS security benchmarks for different Linux distributions so you can 
check the security of the system running below your Kubernetes clusters.

These benchmarks have a lot of tests and not all will apply to every cluster. They are 
recommendations, so you can opt-out in some particular tests. Anyway it is a very good starting 
point to measure the security level of your clusters.



30

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

cHAPter 3

Understanding Kubernetes RBAC
Kubernetes RBAC security context is a fundamental part of your Kubernetes security best practices. 
We will learn how to create a user in Kubernetes and set Kubernetes permissions using RBAC.

Kubernetes role-based access control (RBAC)
Kubernetes RBAC is essentially an authorization and access control specification where you 
define the actions (GET, UPDATE, DELETE, etc) that Kubernetes subjects (i.e. human users, 
software, kubelets) are allowed to perform over Kubernetes entities (i.e. pods, secrets, nodes).

RBAC uses the “rbac.authorization.k8s.io” API group to drive authorization decisions. Before 
getting started, it’s important to understand the API group building blocks:

• Namespaces: Logical segmentation and isolation, or “virtual clusters”. Correct use of 
Kubernetes namespaces is fundamental for security, as you can group together users, 
roles and resources according to business logic without granting global privileges for the 
cluster. Typically you use a namespace to group a project, application, team or customer.

• Subjects: The security “actors”.

 ̸ Regular users: Humans or other authorized accesses from outside the cluster. 
Kubernetes delegates the user creation and management to the administrator. In 
practice, this means that you can “refer” to a user, as we can see on the Kubernetes 
RBAC examples below, but there’s no User API object per se.

 ̸ ServiceAccounts: Used to assign permissions to software entities. Kubernetes 
creates its own default serviceAccounts and you can create additional ones for your 
pods/deployments. Any pod run by Kubernetes gets its own privileges through its 
serviceAccount, and they’re applied to all processes run within the containers of that 
pod.

 ̸ Groups of users: Kubernetes user groups are not explicitly created; instead, the API 
can implicitly group users using a common property, like the prefix of a serviceAccount 
or the organization field of a user certificate. As with regular Linux permissions, you 
can assign RBAC privileges to entire groups.

• Resources: The entities that will be accessed by the subjects.

 ̸ Resources can refer to a generic entity (“pod”, “deployment”, etc), subresources such as 
the logs coming from a pod (“pod/log”) or the particular resource name like an Ingress: 
“ingress-controller-istio”, including custom resources your deployment defines.

 ̸ Resources can also refer to Pod Security Policies or PSP.

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/admin/authorization/rbac/#role-binding-examples
https://kubernetes.io/docs/admin/authentication/#x509-client-certs
https://sysdig.com/blog/kubernetes-security-rbac-tls/#kubernetes-pod-security-policies


31

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e • Role and ClusterRole: A set of permissions over a group of resources. Think of it as 

a “security profile”; a Role is always confined to a single namespace, a ClusterRole is 
cluster-scoped.

 ̸ Before designing your security policy, take into account that Kubernetes RBAC 
permissions are explicitly additive and there are no “deny” rules.

 ̸ Some resources only make sense at the cluster level (i.e. nodes); you need to create a 
ClusterRole to control access in this case.

 ̸ Roles define a list of actions that can be performed over the resources or verbs: GET, 
WATCH, LIST, CREATE, UPDATE, PATCH, DELETE.

• RoleBindings and ClusterRoleBindings: Grants the permissions defined in a Role or 
ClusterRole to a subject or group of subjects. Again, RoleBindings are bound to a certain 
namespace while ClusterRoleBindings are cluster-global.

Let’s start looking at these Role and RoleBinding definitions:

kind: role 

apiVersion: rbac.authorization.k8s.io/v1 

metadata: 

  namespace: default 

  name: pod-reader 

rules: 

- apiGroups: [“”] # “” indicates the core APi group 

  resources: [“pods”] 

  verbs: [“get”, “watch”, “list”] 

 

# this role binding allows “jane” to read pods in the “default” namespace. 

kind: rolebinding 

apiVersion: rbac.authorization.k8s.io/v1 

metadata: 

  name: read-pods 

  namespace: default 

subjects: 

- kind: user 

  name: jane 

  apiGroup: rbac.authorization.k8s.io 

roleref: 

  kind: role 

  name: pod-reader 

 

  apiGroup: rbac.authorization.k8s.io

We define a Role that grants the verbs [“get”, “watch”, “list”] over any pod resource, but only in 
the “default” namespace. Then, we create a RoleBinding that grants the permissions defined in 
“pod-reader” to the user “jane”.

https://kubernetes.io/docs/admin/authorization/rbac/#role-and-clusterrole
https://kubernetes.io/docs/admin/authorization/rbac/#rolebinding-and-clusterrolebinding


32

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

RBAC configuration: API server flags
Start by making sure your cluster configuration supports RBAC. The location of the configuration 
file is your kube-apiserver manifest. This depends on the deployment method, but it’s usually 
inside /etc/kubernetes/manifests in either the master node(s) or the apiserver pod.

Look for this flag: --authorization-mode=node,rbAc

Node authorization is used by the kubelets. We discuss kubelet permissions in the ‘Securing 
Kubernetes components’ chapter of this guide.

While the API server has plenty of flag options, some are best avoided when taking a best 
practices approach to security:

• --insecure-port: Opens up access to unauthorized, unauthenticated requests. If this 
parameter is equal to 0, it means no insecure port.

• --insecure-bind-address: Ideally, you should avoid insecure connections altogether, 
but in case you really need them, you can use this parameter to just bind to localhost. 
Make sure this parameter is not set, or at least not set to a network-reachable IP address.

• --anonymous-auth: Enables anonymous requests to the secure port of the API server.

How to create Kubernetes users 
and serviceAccounts
When it comes to Kubernetes users and permissions, the best approach is one that applies the 
principle of least privilege, which promotes minimal user profile privileges based on users’ job 
necessities:

• Grant the minimum required access privileges for the task that a user or pod needs to 
carry out.

• Prefer Role and RoleBinding to their cluster counterparts, when possible. It’s much easier 
to control security when it is bound to independent namespaces.

• Avoid the use of wildcards [“*”] when defining access to resources or verbs over these 
resources. Be specific.

ServiceAccounts are used to provide an identity to the processes that run in your pods (similar 
concept to the sshd or www-data users in a Linux system). If you don’t specify a serviceAccount, 
these pods will be assigned to the default service account of their namespace.

Using default serviceAccounts can be vague and prone to oversights. Try to use service-specific 
service accounts instead. This way, you can granularly control the API access that you grant to 
any software entity inside your cluster.

https://kubernetes.io/docs/reference/generated/kube-apiserver/


33

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

How to create a Kubernetes serviceAccount
Imagine, for example, that your app needs to query the Kubernetes API to retrieve pod 
information and state changes because you want to notify and send updates using webhooks.

You just need ‘read-only’ access to monitor one specific namespace. Using a serviceAccount, you 
can grant these specific privileges (and nothing else) to your software agent.

The default serviceAccount (the one you will get if you don’t specify any) is unable to retrieve this 
information:

$ kubectl auth can-i list pods -n default 

--as=system:serviceaccount:default:default 

no

We have created an example deployment to showcase this Kubernetes security feature.

Take a look at the rbac/flask.yaml file:

apiVersion: v1 

kind: namespace 

metadata: 

  name: flask 

--- 

apiVersion: v1 

kind: serviceAccount 

metadata: 

  name: flask-backend 

  namespace: flask 

--- 

kind: role 

apiVersion: rbac.authorization.k8s.io/v1 

metadata: 

  name: flask-backend-role 

  namespace: flask 

rules: 

  - apiGroups: [“”] 

    resources: [“pods”] 

    verbs: [“get”, “list”, “watch”] 

---

kind: rolebinding 

apiVersion: rbac.authorization.k8s.io/v1 

metadata: 

  name: flask-backend-role-binding 

  namespace: flask 

subjects: 

  - kind: serviceAccount 

    name: flask-backend 

    namespace: flask 

https://github.com/mateobur/kubernetes-securityguide
https://github.com/mateobur/kubernetes-securityguide/blob/master/rbac/flask.yaml


34

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e  

roleref: 

  kind: role 

  name: flask-backend-role 

  apiGroup: rbac.authorization.k8s.io 

--- 

kind: deployment 

apiVersion: extensions/v1beta1 

metadata: 

  name: flask 

  namespace: flask 

spec:

  replicas: 2 

  template: 

    metadata: 

      labels: 

        app: flask 

    spec: 

      serviceAccount: flask-backend 

      containers: 

      - image: mateobur/flask:latest 

        name: flask 

        ports: 

        - containerPort: 5000

This will create a serviceAccount (“flask backend”), a Role that grants some permissions over the 
other pods in this “flask” namespace, a RoleBinding associating the serviceAccount and the Role 
and finally, a deployment of pods that will use the serviceAccount:

$ kubectl create -f flask.yaml

If you query the secrets for the flask namespace, you can verify that an API access token was 
automatically created for your serviceAccount:

$ kubectl get secrets -n flask 

nAMe                        tyPe                                  dAtA  AGe 

default-token-fjfgn         kubernetes.io/service-account-token   3      5m 

flask-backend-token-68b6q   kubernetes.io/service-account-token   3      5m



35

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e Then, you can check that the permissions are working as expected with the kubectl auth 

command that can query access for verbs and subjects, as well as impersonate other accounts:

$ kubectl auth can-i list pods -n default --as=system:serviceaccount:flask:

flask-backend 

no 

 

$ kubectl auth can-i list pods -n flask --as=system:serviceaccount:flask:fl

ask-backend 

yes 

 

$ kubectl auth can-i create pods -n flask --as=system:serviceaccount:flask:

flask-backend 

no

To summarize, you will need to configure a serviceAccount and its related Kubernetes RBAC 
permissions if your software needs to interact with the hosting Kubernetes cluster. Other 
examples might include the kubelet agents or a Kubernetes Horizontal Pod Autoscaler.

How to create a Kubernetes user
As we mentioned before, Kubernetes users do not have an explicit API object that you can create, 
list or modify.

Users are bundled as a parameter of a configuration context that defines the cluster name, 
(default) namespace and username:

$ kubectl config get-contexts 

current   nAMe                          cLuster      AutHinFO           

nAMesPAce 

*         kubernetes-admin@kubernetes   kubernetes   kubernetes-admin

If you look at the current context, you will note that the user has client-certificate-data and client-
key-data attributes (omitted in the output by default for security reasons).

$ kubectl config view 

… 

users: 

- name: kubernetes-admin 

  user: 

    client-certificate-data: REDACTED 

    client-key-data: redActed

If you have access to the Kubernetes root certification authority, you can generate a new security 
context that declares a new Kubernetes user.

https://sysdig.com/blog/kubernetes-scaler/


36

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e So, in order to create a new Kubernetes user, let’s start creating a new private key:

$ openssl genrsa -out john.key 2048

Then, you need to create a certificate signing request containing the public key and other subject 
information:

$ openssl req -new -key john.key -out john.csr -subj “/cn=john/

O=examplegroup”

Note that Kubernetes will use the Organization (O=examplegroup) field to determine user group 
membership for RBAC.

You will sign this CSR using the root Kubernetes CA, found in /etc/kubernetes/pki for this example. 
The file location in your deployment may vary:

# openssl x509 -req -in john.csr -cA /etc/kubernetes/pki/ca.crt -cAkey /

etc/kubernetes/pki/ca.key -cAcreateserial -out john.crt 

signature ok 

subject=/cn=john/O=examplegroup 

Getting cA Private Key

You can inspect the new certificate:

# openssl x509 -in john.crt -text 

Certificate: 

    data: 

        Version: 1 (0x0) 

        serial number: 11309651818125161147 (0x9cf3f46850b372bb) 

    signature Algorithm: sha256WithrsAencryption 

        issuer: cn=kubernetes 

        Validity 

            not before: Apr  2 20:20:54 2018 GMt 

            not After : May  2 20:20:54 2018 GMt 

        subject: cn=john, O=examplegroup 

        subject Public Key info: 

            Public Key Algorithm: rsaencryption 

                Public-Key: (2048 bit)



37

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e Let’s repeat this process for a second user so we can show how to assign Kubernetes RBAC 

permissions to a group:

$ openssl genrsa -out mary.key 2048 

$ openssl req -new -key mary.key -out mary.csr -subj “/cn=mary/

O=examplegroup” 

# openssl x509 -req -in mary.csr -cA /etc/kubernetes/pki/ca.crt -cAkey /

etc/kubernetes/pki/ca.key -cAcreateserial -out mary.crt

You can now register the new credentials and config context:

$ kubectl config set-credentials john --client-certificate=/home/newusers/

john.crt --client-key=/home/newusers/john.key 

$ kubectl config set-context john@kubernetes --cluster=kubernetes 

--user=john 

context “john@kubernetes” created. 

 

$ kubectl config get-contexts 

current   nAMe                          cLuster       

AutHinFO           nAMesPAce 

*         kubernetes-admin@kubernetes   kubernetes    

kubernetes-admin 

          john@kubernetes               kubernetes    

john

If you want this file to be portable between hosts, you need to embed the certificates inline. You 
can do this automatically appending the --embed-certs=true parameter to the kubectl config set-
credentials command.

Let’s use this new user / context:

$ kubectl config use-context john@kubernetes 

$ kubectl get pods 

error from server (Forbidden): pods is forbidden: user “john” cannot list 

pods in the namespace “default”

Ok, this is expected because we haven’t assigned any RBAC permissions to our “john” user.



38

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e Let’s go back to our root admin user and create a new clusterrolebinding:

$ kubectl config use-context kubernetes-admin@kubernetes 
$ kubectl create clusterrolebinding examplegroup-admin-binding 
--clusterrole=cluster-admin --group=examplegroup 
clusterrolebinding “examplegroup-admin-binding” created 
 
$ kubectl config use-context john@kubernetes 
$ kubectl get pods 
nAMe        reAdy     stAtus    restArts   AGe 
flask-cap   1/1       Running   0          1m

Please note that we have assigned these credentials to the group rather than the user, so the 
user ‘mary’ should have exactly the same access privileges.

Using an external user directory
Instead of managing your users via manual certificates and contexts, you can delegate 
authentication to an external backend, like a company-local LDAP directory or cloud-based 
identity manager.

There are several authentication strategies and protocols supported by the Kubernetes client. 
Additionally, kubectl can be configured to use an external binary to retrieve user credentials, thus 
making it compatible with any directory software that has written an integration layer.

Another popular option that is relatively easy to configure and is supported by the major cloud 
providers is OpenID Connect(OIDC).

To use OpenID, first, you need to instruct the Kubernetes API service about the external endpoint 
and client ID. Here you have the complete list of OIDC parameters. These are the two mandatory 
ones (Google Cloud example):

- --oidc-issuer-url=https://accounts.google.com 
- --oidc-client-id=someuser.apps.googleusercontent.com

Once the API backend is configured, the Kubernetes operator can obtain a valid context (an 
actual set of Kubernetes credentials) using the set-credentials subcommand and a set of ID 
tokens and URL provided by the authentication backend:

kubectl config set-credentials USER_NAME  
   --auth-provider=oidc  
   --auth-provider-arg=idp-issuer-url=( issuer url )  
   --auth-provider-arg=client-id=( your client id )  
   --auth-provider-arg=client-secret=( your client secret )  
   --auth-provider-arg=refresh-token=( your refresh token )  
   --auth-provider-arg=idp-certificate-authority=( path to your ca 
certificate )  
   --auth-provider-arg=id-token=( your id_token )

You have a complete step-by-step tutorial for the Google Cloud user backend here.

https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#client-go-credential-plugins
https://en.wikipedia.org/wiki/OpenID_Connect
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#configuring-the-api-server
https://accounts.google.com
https://cloud.google.com/community/tutorials/kubernetes-auth-openid-rbac


39

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

cHAPter 4

Security at the pod level: K8s security 
content, PSP, and network policies
Once you have defined Kubernetes RBAC: users and services credentials and permissions, 
we can start leveraging Kubernetes orchestration capabilities to configure security at the pod 
level. In this part, we will learn how to configure security at the pod level using Kubernetes 
orchestration capabilities: Kubernetes Security Context, Kubernetes Security Policy and 
Kubernetes Network Policy resources to define the container privileges, permissions, capabilities 
and network communication rules. We will also discuss how to limit resource starvation with 
allocation management.

Kubernetes admission controllers
An admission controller is a piece of code that intercepts requests to the Kubernetes API 
server prior to persistence of the object, but after the request is authenticated and authorized. 
Admission controllers pre-process the requests and can provide utility functions (such as filling 
out empty parameters with default values), but can also be used to enforce security policies and 
other checks.

Admission controllers are found on the kube-apiserver conf file:

--enable-admission-plugins=namespaceLifecycle,Limitranger,service 

Account,taintnodesbycondition,Priority,defaulttolerationseconds, 

defaultstorageclass,storageObjectinuseProtection,PersistentVolume 

claimresize,MutatingAdmissionWebhook,ValidatingAdmissionWebhook, 

runtimeclass,resourceQuota

Here are the admission controllers that can help you strengthen security:

DenyEscalatingExec: Forbids executing commands on an “escalated” container. This includes 
pods that run as privileged, have access to the host IPC namespace and have access to the host 
PID namespace. Without this admission controller, a regular user can escalate privileges over the 
Kubernetes node by just spawning a terminal on these containers.

NodeRestriction: Limits the node and pod objects a kubelet can modify. Using this controller, a 
Kubernetes node will only be able to modify the API representation of itself and the pods bound 
to this node.

https://sysdig.com/blog/kubernetes-admission-controllers/


40

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e PodSecurityPolicy: This admission controller acts on creation and modification of the pod and 

determines if it should be admitted based on the requested Security Context and the available 
Pod Security Policies. The PodSecurityPolicy objects define a set of conditions and security 
context that a pod must declare in order to be accepted into the cluster. We will cover PSP in 
more detail below.

ValidatingAdmissionWebhooks: Calls any external service that is implementing your custom 
security policies to decide if a pod should be accepted in your cluster. For example, you can pre-
validate container images using Grafeas, a container-oriented auditing and compliance engine, 
or validate scanned images.

There is a recommended set of admission controllers to run depending on your Kubernetes 
version. After version 1.10 all the recommended controllers are enabled by default.

Kubernetes security context
When you declare a pod/deployment, you can group several security-related parameters, like 
SELinux profile, Linux capabilities, etc, in a Security context block:

… 

spec: 

  securitycontext: 

    runAsuser: 1000 

    runAsGroup 

    fsGroup: 2000 

… 

You can configure the following parameters as part of your security context:

Privileged: Processes inside of a privileged container get almost the same privileges as those 
outside of a container, such as being able to directly configure the host kernel or host network 
stack.

Other context parameters that you can enforce include:

User and Group ID for the processes, containers and volumes: When you run a container 
without any security context, the ‘entrypoint’ command will run as root. This is easy to verify:

$ kubectl run -i --tty busybox --image=busybox --restart=never -- sh 

/ # ps aux 

Pid   user     tiMe  cOMMAnd 

    1 root      0:00 sh

https://github.com/kelseyhightower/grafeas-tutorial
https://github.com/kelseyhightower/grafeas-tutorial
https://sysdig.com/blog/container-security-docker-image-scanning/
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/admin/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/concepts/workloads/pods/pod/#privileged-mode-for-pod-containers


41

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e Using the runAsUser parameter you can modify the user ID of the processes inside a container. 

For example:

apiVersion: v1 

kind: Pod 

metadata: 

  name: security-context-demo 

spec: 

  securitycontext: 

    runAsuser: 1000 

    fsGroup: 2000 

  volumes: 

  - name: sec-ctx-vol 

    emptydir: {} 

  containers: 

  - name: sec-ctx-demo 

    image: gcr.io/google-samples/node-hello:1.0 

    volumeMounts: 

    - name: sec-ctx-vol 

      mountPath: /data/demo 

    securitycontext: 

      allowPrivilegeescalation: false

If you spawn a container using this definition, you can check that the initial process is using UID 
1000.

user   Pid %cPu %MeM    VsZ   rss tty   stAt stArt   tiMe cOMMAnd

1000     1  0.0  0.0   4336   724 ?     ss   18:16   0:00 /bin/sh -c node 

server.js

And any file you create inside the /data/demo volume will use GID 2000 (due to the fsGroup 
parameter).

Security Enhanced Linux (SELinux): You can assign SELinuxOptions objects using the 
seLinuxOptions field. Note that the SELinux module needs to be loaded on the underlying Linux 
nodes for these policies to take effect.

Capabilities: Linux capabilities break down root full unrestricted access into a set of separate 
permissions. This way, you can grant some privileges to your software, like binding to a port < 
1024, without granting full root access.

There is a default set of capabilities granted to any container if you don’t modify the security 
context. For example, using chown to set file permissions or net_raw to craft raw network 
packages.

Using the pod security context, you can drop default Linux capabilities and/or add non-default 
Linux capabilities. Again, applying the principle of least-privilege, you can greatly reduce the 
damage of any malicious attack taking over the pod.

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#assign-selinux-labels-to-a-containerhttps://kubernetes.io/docs/tasks/configure-pod-container/security-context/#assign-selinux-labels-to-a-container
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities


42

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e As a quick example, you can spawn the flask-cap pod:

 

$ kubectl create -f flask-cap.yaml 

 

apiVersion: v1 

kind: Pod 

metadata: 

  name: flask-cap 

  namespace: default 

spec: 

  containers: 

  - image: mateobur/flask 

    name: flask-cap 

    securitycontext: 

      capabilities: 

        drop: 

          - net_rAW 

          - cHOWn

Note that some securityContext should be applied at the pod level, while other labels are applied 
at container level.

If you spawn a shell, you can verify that these capabilities have been dropped:

$ kubectl exec -it flask-cap bash 

root@flask-cap:/# ping 8.8.8.8 

ping: Lacking privilege for raw socket. 

root@flask-cap:/# chown daemon /tmp 

chown: changing ownership of ‘/tmp’: Operation not permitted

AppArmor and Seccomp: You can also apply the profiles of these security frameworks to 
Kubernetes pods. This feature is in beta state as of Kubernetes 1.9, profile configurations are 
referenced using annotations for the time being.

AppArmor, Seccomp or SELinux allow you to define run-time profiles for your containers, but if 
you want to define run-time profiles at a higher level with more context, Sysdig Falco and Sysdig 
Secure can be better options. Sysdig Falco monitors the run-time security of your containers 
according to a set of user-defined rules. It has some similarities and some important differences 
with the other tools we just mentioned (reviewed in the “SELinux, Seccomp, Sysdig Falco, and 
you” article).

AllowPrivilegeEscalation: The execve system call can grant a newly-started program privileges 
that its parent did not have, such as the setuid or setgid Linux flags. This is controlled by the 
AllowPrivilegeEscalation boolean and should be used with care and only when required.

https://github.com/mateobur/kubernetes-securityguide/blob/master/capabilities/flask-cap.yaml
https://raw.githubusercontent.com/kubernetes/website/master/content/en/examples/pods/security/hello-apparmor.yaml
https://raw.githubusercontent.com/kubernetes/website/master/content/en/examples/pods/security/hello-apparmor.yaml
https://sysdig.com/opensource/falco/
https://sysdig.com/product/secure/
https://sysdig.com/product/secure/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://www.kernel.org/doc/Documentation/prctl/no_new_privs.txt


43

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e ReadOnlyRootFilesystem: This controls whether a container will be able to write into the root 

filesystem. It is common that the containers only need to write on mounted volumes that persist 
the state, as their root filesystem is supposed to be immutable. You can enforce this behavior 
using the readOnlyRootFilesystem flag:

$ kubectl create -f https://raw.githubusercontent.com/mateobur/kubernetes-

securityguide/master/readonly/flask-ro.yaml 

$ kubectl exec -it flask-ro bash 

root@flask-ro:/# mount | grep “/ “ 

none on / type aufs (ro,relatime,si=e6100da9e6227a70,dio,dirperm1) 

root@flask-ro:/# touch foo 

touch: cannot touch ‘foo’: Read-only file system

Kubernetes security policy
By default, Kubernetes is quite lenient about who or what can create pods and the privileges of 
containers - one could easily create a privileged container that could cause harm, or jeopardize 
the security of the system. Pod Security Policies provides a mechanism to lock down the system. 
They define a set of conditions that a pod must run with in order to be accepted into the cluster.

Kubernetes Pod Security Policy (PSP), often shortened to Kubernetes Security Policy, is 
implemented as an admission controller. Using security policies, you can restrict the pods that 
will be allowed to run on your cluster, only if they follow the policy we have defined.

PSP

Prevent pods from starting
Control privilege escalation Restrict resources:

- Namespaces
- Network
- Filesystem

Restrict users and groups
the pod can run as

Limit access to volumes
Other parameters:
- Runtime profiles
- Read-only root filesystems

https://sysdig.com/blog/kubernetes-security-psp-network-policy/#admission-controllers


44

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e You have different control aspects that the cluster administrator can set:

Control Aspect Field Names

Running of privileged containers privileged

Usage of the root namespaces hostPID, hostIPC

Usage of host networking and ports hostNetwork, hostPorts

Usage of volume types volumes

Usage of the host filesystem allowedHostPaths

White list of FlexVolume drivers allowedFlexVolumes

Allocating an FSGroup that owns the pod’s volumes fsGroup

Requiring the use of a read only root file system readOnlyRootFilesystem

The user and group IDs of the container runAsUser, supplementalGroups

Restricting escalation to root privileges allowPrivilegeEscalation, 
defaultAllowPrivilegeEscalation

Linux capabilities defaultAddCapabilities, 
requiredDropCapabilities, 
allowedCapabilities

The SELinux context of the container seLinux

The AppArmor profile used by containers annotations

The seccomp profile used by containers annotations

The sysctl profile used by containers annotations

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#privileged
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#host-namespaces
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#host-namespaces
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#volumes-and-file-systems
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#volumes-and-file-systems
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#flexvolume-drivers
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#volumes-and-file-systems
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#volumes-and-file-systems
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#privilege-escalation
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#privilege-escalation
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#capabilities
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#capabilities
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#capabilities
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#selinux
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#apparmor
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#seccomp
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#sysctl


45

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e PSP functionality is enabled by adding PodsecurityPolicy to the kubeapi-server configuration, i.e.

--enable-admission-plugins=...,PodsecurityPolicy

Pod Security Policies are quite complex, therefore it is critically important to understand exactly 
how they work before attempting to implement them.

One thing to bear in mind is that this is a global setting and you cannot just enable it for a 
particular part of your cluster. Once enabled, it affects every deployment and namespace in your 
cluster, including the default, kube-public and kube-system namespaces.  Also, the default 
policy is to disallow anything that’s not explicitly allowed.

Once PSP is enabled, then everything is locked down and you must set policy rules to explicitly 
allow.  Individual PSP policies are implemented as declarative YAML objects. For example:

apiVersion: extensions/v1beta1

kind: PodsecurityPolicy

metadata:

  name: example

spec:

  privileged: false

  runAsuser:

    rule: MustrunAsnonroot

  seLinux:

    rule: runAsAny

  fsGroup:

    rule: runAsAny

  supplementalGroups:

    rule: runAsAny

  volumes:

  - ‘nfs’

  hostPorts:

  - min: 100

    max: 100

This PSP definition implements the following security rules:

• Disallow containers running in privileged mode.

• Disallow containers that require root privileges.

• Disallow containers that access volumes apart from NFS volumes.

• Disallow containers that access host ports apart from port 100.

There is a direct relation between the Kubernetes Pod Security Context labels and the Kubernetes 
Pod Security Policies. Your Security Policy will filter allowed pod security contexts defining:

• Default pod security context values (i.e. defaultAddcapabilities).

• Mandatory pod security flags and values (i.e. allowPrivilegeescalation: false).

• Whitelists and blacklists for the list-based security flags (i.e. list of allowed host paths to 
mount).



46

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e For example, to define that container can only mount a specific host path, you would do:

allowedHostPaths: 

  # this allows “/foo”, “/foo/”, “/foo/bar” etc., but 

  # disallows “/fool”, “/etc/foo” etc. 

  # “/foo/../” is never valid. 

  - pathPrefix: “/foo”

PSP policies are applied upon pod creation, and the default policy is aggressively secure. This 
means you could turn PSP functionality on with no immediately obvious effect. However, as 
pods disappear over time and Kubernetes tries to start new ones, these may be disallowed 
causing major problems with your system. Therefore, it is common, and much easier, to apply a 
reasonably liberal default policy once PSP is enabled, then systematically secure certain aspects, 
rather than enable it with no default policy and manually enable secured functionality.

PSP and RBAC
When a user accesses the cluster using kubectl, for example, to manually create a pod, they 
are authenticated by the apiserver as a particular ‘User Account’, e.g. ‘admin’.  However, in a 
production environment, a user typically creates a Deployment, StatefulSet, Job, or Daemonset, 
and these in turn use a controller to create the pod. In this case, the controller is authenticated as 
a particular ‘Service Account’, e.g. ‘default’.

There is a complex RBAC engine that determines the privileges a particular controller has. See 
‘Kubernetes Role-Based Access Control (RBAC)’ on page 32 for a description of RBAC and role 
binding.

We saw earlier how Roles and Rolebindings are implemented using Yaml objects to define who 
has permissions to perform specific actions on certain resources., i.e.



47

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

 

kind: rolebinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

  name: read-pods

  namespace: default

subjects:

- kind: user

  name: jane

  apiGroup: rbac.authorization.k8s.io

roleref:

  kind: role

  name: pod-reader

  apiGroup: rbac.authorization.k8s.io

 

kind: role

apiVersion: rbac.authorization.k8s.io/v1

metadata:

  namespace: default

  name: pod-reader

rules:

- apiGroups: [“”]

  resources: [“pods”]

  verbs: [“get”, “watch”, “list”]

When implementing PSP the Role definition may also specify a PSP object using the 
resourcenames directive, as illustrated below:

 

kind: rolebinding

apiVersion:  

rbac.authorization.k8s.io/v1

metadata:

  name: read-pods

  namespace: default

subjects:

- kind: user

  name: jane

  apiGroup: rbac.authorization.

k8s.io

roleref:

  kind: role

  name: pod-reader

  apiGroup: rbac.authorization.

k8s.io

 

kind: role

apiVersion:  

rbac.authorization.k8s.io/v1

metadata:

  namespace: default

  name: pod-reader

rules:

- apiGroups: [“”]

  resources: [“pods”]

  verbs: [“get”, “watch”, 

“list”]

  resourcenames: [no_priv_psp]

 

kind:  

PodsecurityPolicy

apiVersion: extensions/v1beta1

metadata:

  name: no_priv_psp

spec:

  privileged: false

 runAsuser:

    rule: MustrunAsnonroot

  seLinux:

    rule: runAsAny

 

This allows you to define much more granular rules that set which users and service accounts 
may create within the cluster.



48

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

Implementing PSPs
As mentioned previously,  you can only use PSPs if they are enabled in your Kubernetes cluster’s 
admission controller.  You can easily tell if they’re enabled by executing the following command:

$ kubectl get psp 

the server doesn’t have a resource type “podsecurityPolicies”.

If the command returns the error message illustrated above, then PSP has not been enabled in 
the cluster. However, if it has been enabled, but no policies have yet been loaded, then you will 
see the following:

$ kubectl get psp 

no resources found,

If you plan to enable PodSecurityPolicy, first configure (or have present already) a default PSP 
and the associated RBAC permissions, otherwise the cluster will fail to create new pods.

If your cloud provider / deployment design already supports and enables PSP, it will come pre-
populated with a default set of policies, for example:

 

$ kubectl get psp 

nAMe                          PriV     cAPs    seLinuX    runAsuser  FsGrOuP    suPGrOuP reAdOnLyrOOtFs   

VOLuMes 

gce.event-exporter             false   []      runAsAny   runAsAny   runAsAny   runAsAny false            

[hostPath secret] 

gce.fluentd-gcp               false    []      RunAsAny   RunAsAny   RunAsAny   RunAsAny false            

[configMap hostPath secret] 

gce.persistent-volume-binder  false    []      runAsAny   runAsAny   runAsAny   runAsAny false            

[nfs secret] 

gce.privileged                true     [*]     runAsAny   runAsAny   runAsAny   runAsAny false            

[*] 

gce.unprivileged-addon        false    []      runAsAny   runAsAny   runAsAny   runAsAny false            

[emptyDir configMap secret]

In the event you enabled PSP for a cluster that didn’t have any pre-populated rule, you can create 
a permissive policy to avoid run-time disruption and then perform iterative adjustments over your 
configuration:

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#authorizing-policies


49

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e For example, this policy below will prevent the execution of any pod that tries to use the root user 

or group, allowing any other security context:

 

apiVersion: extensions/v1beta1 

kind: PodsecurityPolicy 

metadata: 

  name: example 

spec: 

  privileged: true 

  seLinux: 

    rule: runAsAny 

  supplementalGroups: 

    rule: runAsAny 

  runAsuser: 

    rule: runAsAny 

  fsGroup: 

    rule: ‘MustrunAs’ 

    ranges: 

      - min: 1 

        max: 65535 

  volumes: 

  - ‘*’ 

Working with PSPs by example
Here, we will go through a number of steps to illustrate the PSP functionality. If you have a 
Kubernetes system available, then you can perform these steps. If not, then you can follow along 
in the text.

Note: These steps will enable PSP in your clusters, so do not perform these on a working 
environment.

Firstly, set up a namespace and a service account.

$ kubectl create namespace example-psp

kubectl create serviceaccount -n example-psp foo-user

Before we start, we need to set a basic Role Based Access Control (RBAC) configuration in order 
to be able to run our PSP.

$ kubectl create rolebinding -n example-psp fake-editor --clusterrole=edit 

--serviceaccount=example-psp:foo-user



50

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e This command creates a rolebinding called fake-editor between the service account called foo-

user and gives it the role of edit.

Before we implement PSP, let’s verify that we have unlimited access to create resources. We’ll 
test this by creating a privileged container named privileged01.

$ kubectl -n example-psp --as=system:serviceaccount:example-psp:foo-user 

create -f- <<EOF

apiVersion: v1

kind: Pod

metadata:

  name:      privileged01

spec:

  containers:

    - name:  pause

      image: k8s.gcr.io/pause

      securitycontext:

        privileged: true

eOF

pod/privileged01 created

The output pod/privileged01 created shows that it worked.

We can also see that the order was successful, as follows:

$ kubectl get pods -n example-psp

nAMe            reAdy    stAtus     restArts    AGe

privileged01    1/1      running    0           1m16s

Unlimited access to resource creation may be the source of privilege escalation or other threats to 
our cluster. Enabling PSPs can help prevent this.

Before we can define PSP policies, we need to enable PSP in the cluster. To do so, edit the file 
kube-apiserver.yaml.

Note: The location of this file depends upon your installation.

Ensure PodSecurityPolicy is included in the list of Admission Controllers, e.g.

--enable-admission-plugins=noderestriction,PodsecurityPolicy



51

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e Now PSP is enabled, but if we try to create a privileged pod, then we get an error stating there 

are no policies to check it against:

 

$ kubectl -n example-psp --as=system:serviceaccount:example-psp:foo-user 

create -f- <<EOF

apiVersion: v1

kind: Pod

metadata:

  name:      privileged02

spec:

  containers:

    - name:  pause

      image: k8s.gcr.io/pause

      securitycontext:

        privileged: true

eOF

error from server (Forbidden): error when creating “stdin”: pods 

“privileged02” is forbidden: no providers available to validate pod request

For this example, we will define a PSP policy explicitly blocking privileged containers.

We shall create a the following PSP policy file, called example-psp.yaml:

apiVersion: policy/v1beta1

kind: PodsecurityPolicy

metadata:

  name: example

spec:

  privileged: false

  seLinux:

    rule: runAsAny

  supplementalGroups:

    rule: runAsAny

  runAsuser:

    rule: runAsAny

  fsGroup:

    rule: runAsAny

  volumes:

  - ‘*’



52

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e We can view the policy as follows:

 

$ kubectl get psp 

nAMe      PriV   cAPs    seLinuX    runAsuser   FsGrOuP    suPGrOuP   reAdOnLyrOOtFs   VOLuMes 

example   false          runAsAny   runAsAny    runAsAny   runAsAny   false            *

Now we will apply the policy:

$ kubectl -n example-psp create -f example-psp.yaml

We have enabled PSP on our cluster and also have a PSP defined. Let’s try to create the same 
privileged container again. We’ll name it privileged02:

$ kubectl -n example-psp --as=system:serviceaccount:example-psp:foo-user 

create -f- <<EOF

apiVersion: v1

kind: Pod

metadata:

  name:  privileged02

spec:

  containers:

    - name:  pause

      image: k8s.gcr.io/pause

      securitycontext:

        privileged: true

eOF

error from server (Forbidden): error when creating “stdin”: pods 

“privileged02” is forbidden: unable to validate against any pod security 

policy: [spec.containers[0].securitycontext.privileged: invalid value: 

true: Privileged containers are not allowed]

This time the error indicates that the creation of privileged containers is explicitly forbidden by 
PSP.  Our policy is working as we expected. 

We can once again enable privileged containers at our cluster to check that this change of 
behaviour was produced by the PSP.



53

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e We shall edit example-psp.yaml and change privileged: false to privileged: true.

apiVersion: policy/v1beta1

kind: PodsecurityPolicy

metadata:

  name: example

spec:

  privileged: true

  seLinux:

    rule: runAsAny

  supplementalGroups:

    rule: runAsAny

  runAsuser:

    rule: runAsAny

  fsGroup:

    rule: runAsAny

  volumes:

  - ‘*’

We need to re-apply the policy: 

$ kubectl -n example-psp apply -f example-psp.yaml

Now if we try again to create a privileged container, we’ll see that it succeeds:

kubectl -n example-psp --as=system:serviceaccount:example-psp:foo-user 

create -f- <<EOF

apiVersion: v1

kind: Pod

metadata:

  name:      privileged03

spec:

  containers:

    - name:  pause

      image: k8s.gcr.io/pause

      securitycontext:

        privileged: true

eOF

pod/privileged03 created



54

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e Looking at the policy again you will see that privileged containers are explicitly allowed:

$ kubectl get psp -n example-psp

 

nAMe     PriV    cAPs    seLinuX     runAsuser    FsGrOuP     suPGrOuP    reAdOnLyrOOtFs   VOLuMes

example   true            runAsAny    runAsAny     runAsAny    runAsAny    false           *

Practical considerations
You must take into consideration the ordering of your PSP policies. When multiple policies are 
available, the pod security policy controller selects them according to the following criteria:

• PodSecurityPolicies which allow the pod as-is without changing defaults or mutating the 
pod, are preferred. The order of these non-mutating PodSecurityPolicies doesn’t matter.

• If the pod must be defaulted or mutated, the first PodSecurityPolicy (ordered by name) to 
allow the pod is selected.

Please refer to the Kubernetes documentation for further details.  

Deploying usually involves the following pseudo process: 

1. Apply your PSPs *before* enabling them 

2. Enable the PodSecurityPolicy Admission Controller in the kubeAPI configuration

3. Recycle your Pods that are under the control of the PSP

4. Monitor closely and fix/add PSPs as needed 

Kubernetes network policies
Kubernetes also defines security at the pod networking level. A network policy is a specification 
of how groups of pods are allowed to communicate with each other and other network 
endpoints.

You can compare Kubernetes network policies with classic network firewalling (ala iptables) but 
with one important advantage: using Kubernetes context like pod labels, namespaces, etc.

Kubernetes supports several third-party plugins that implement pod overlay networks. You need 
to check your provider documentation (these for Calico or Weave) to make sure that Kubernetes 
network policies are supported and enabled, otherwise, the configuration will show up in your 
cluster but will not have any effect.

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#policy-order
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/cluster-administration/network-plugins/
https://kubernetes.io/docs/tasks/administer-cluster/calico-network-policy/
https://kubernetes.io/docs/tasks/administer-cluster/weave-network-policy/


55

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e Let’s use the Kubernetes example scenario guestbook to show how these network policies work:

kubectl create -f https://raw.githubusercontent.com/fabric8io/kansible/

master/vendor/k8s.io/kubernetes/examples/guestbook/all-in-one/guestbook-

all-in-one.yaml

This will create ‘frontend’ and ‘backend’ pods:

$ kubectl describe pod frontend-685d7ff496-7s6kz | grep tier 

        tier=frontend 

$ kubectl describe pod redis-master-7bd4d6ccfd-8dnlq | grep tier 

        tier=backend

You can configure your network policy with these logical resources. Abstracting concepts such 
as IP addresses or physical nodes won’t work because Kubernetes can change them dynamically.

Let’s apply the following network policy:

apiVersion: networking.k8s.io/v1 

kind: networkPolicy 

metadata: 

  name: deny-backend-egress 

  namespace: default 

  spec: 

    podselector: 

      matchLabels: 

        tier: backend 

        policytypes: 

          - egress 

          egress: 

            - to: 

              - podselector: 

                matchLabels: 

                  tier: backend

You can also find that in the repository:

$ kubectl create -f netpol/guestbook-network-policy.yaml

https://github.com/kubernetes/examples/tree/master/guestbook


56

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e Then you can get the pod names and local IP addresses using:

$ kubectl get pods -o wide 

[...]

In order to check that the policy is working as expected, you can ‘exec’ into the ‘redis-master’ pod 
and try to ping first a ‘redis-slave’ (same tier) and then a ‘frontend’ pod:

$ kubectl exec -it redis-master-7bd4d6ccfd-8dnlq bash 

$ ping 10.28.4.21 

PinG 10.28.4.21 (10.28.4.21) 56(84) bytes of data. 

64 bytes from 10.28.4.21: icmp_seq=1 ttl=63 time=0.092 ms 

$ ping 10.28.4.23 

PinG 10.28.4.23 (10.28.4.23) 56(84) bytes of data. 

(no response, blocked)

This policy will be enforced even if the pods migrate to another node or are scaled up/down.

You can also use namespace selectors and CIDR ip blocks for your ingress and egress rules, like 
in the example below:

 ingress: 

  - from: 

    - ipblock: 

        cidr: 172.17.0.0/16 

        except: 

        - 172.17.1.0/24 

    - namespaceselector: 

        matchLabels: 

          project: myproject 

    - podselector: 

        matchLabels: 

          role: frontend

Kubernetes resource allocation management
Resource limits are usually established to avoid unintended saturation due to design limitations 
or software bugs, but can also protect against malicious resource abuse. Unauthorized 
resource consumption that tries to remain undetected is becoming much more common due to 
cryptojacking attempts.

There are two basic concepts: requests and limits.

https://kubernetes.io/docs/concepts/services-networking/network-policies/#the-networkpolicy-resource
https://sysdig.com/blog/detecting-cryptojacking/


57

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e Requests: The Kubernetes node will check if it has enough resources left to fully satisfy the 

request before scheduling the pod. This value will be mainly used for scheduling. The requested 
resources are not guaranteed

You can run a quick example from the resources/flask-resources.yaml repository file

apiVersion: v1 

kind: Pod 

metadata: 

  name: flask-resources 

  namespace: default 

spec: 

  containers: 

  - image: mateobur/flask 

    name: flask-resources 

    resources: 

      requests: 

        memory: 512Mi 

      limits: 

        memory: 700Mi 

 

$ kubectl create -f resources/flask-resources.yaml

Limits: Are the top resource consumption the container can make. Kubernetes ensures that the 
actual resource consumption never goes over the configured limits.

Let’s use the stress load generator to test the limits:

root@flask-resources:/# stress --cpu 1 --io 1 --vm 2 --vm-bytes 800M 

stress: info: [79] dispatching hogs: 1 cpu, 1 io, 2 vm, 0 hdd 

stress: FAIL: [79] (416) <-- worker 83 got signal 9

The resources that you can reserve and limit by default using the pod description are:

• CPU

• Main memory

• Local ephemeral storage

There are some third party plugins and cloud providers that can extend the Kubernetes API to 
allow defining requests and limits over any other kind of logical resources using the Extended 
Resources interface. You can also configure resource quotas bound to a namespace context.

https://people.seas.harvard.edu/~apw/stress/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#local-ephemeral-storage
https://kubernetes.io/docs/tasks/configure-pod-container/extended-resource/
https://kubernetes.io/docs/tasks/configure-pod-container/extended-resource/
https://kubernetes.io/docs/tasks/administer-cluster/quota-memory-cpu-namespace/


58

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

cHAPter 5

Securing workloads at runtime
Although image scanning is the first step in managing security risk, runtime security is a critical 
component of a secure DevOps workflow.

Several security threats, by their very nature, only manifest during runtime:

• Zero-day vulnerabilities

• Misconfigurations

• Software bugs causing erratic behavior or resource leaking

• Internal privilege escalation attempts

Runtime security will protect you against these threats. At the same time, it will also help you verify 
that the other security barriers are effective, let you configure them, and provide a last line of defense.

The key aspects of runtime security are:

• Continuous scanning: By continuously tracking your running images, you can detect 
which ones are affected by newly discovered vulnerabilities, or aren’t compliant after a 
change in your policies.

• Threat detection: Is your container doing what it’s supposed to do? By monitoring your 
container activity, you can immediately identify suspicious behaviour.

• Automatic incident response: Once a policy violation is detected, action needs to be 
taken as soon as possible. An automatic response will block security threats right when 
they are detected by killing or pausing the affected containers, notifying the relevant 
people about the incident.

• Capturing forensics data: After an incident, you need to find the source to prevent it 
from happening again. Comprehensive forensics data is crucial for your investigation, 
as well as being able to correlate events from several sources with concrete Kubernetes 
resources (namespaces, deployments, containers, etc.).

Let’s see how you can implement container runtime security when securing your Kubernetes 
cluster to prevent threats and remediate security incidents when they happen.

https://sysdig.com/products/kubernetes-security/runtime-security/


59

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

How to implement runtime security
Choosing the right tools is vital for an effective implementation. With so many security products 
available, all with their distinct methods, advantages and weaknesses, you’ll need to know about 
each one before making a decision.

Overall, these products can be grouped into those focused on enforcement vs. auditing. Both 
groups use policies to describe what is considered allowed or disallowed behavior for a process 
in terms of privileges or resources accessed, like files or network.

Enforcement tools use policies to limit the behavior of a process. This is done by preventing 
system calls from succeeding and even killing the process in some cases. Seccomp, SELinux and 
AppArmor are examples of enforcement tools.

Auditing tools use policies to monitor the behavior of a process and notify when its actions step 
outside the policy. Falco is primarily an auditing tool, although it has some enforcement capabilities.

Let’s examine those tools in more detail!

Falco
Falco is the de facto Kubernetes threat detection engine. Falco detects unexpected application 
behavior and alerts on threats at runtime. An open source tool originally created by us at Sysdig, 
Falco is the first runtime security project to join the CNCF Incubating stage.

Falco uses eBFP (among other sources) to capture system calls, with Kubernetes application 
context, to gain visibility into runtime system activity of containers and hosts. By tapping into 
our Sysdig open-source libraries through Linux system calls, it can run in high performance 
production environments. Falco also ingests Kubernetes API audit events to provide runtime 
detection and alerting for orchestration activity.

The security events generated by Falco can be used by other tools, like kubernetes-response-
engine, to perform the actual enforcement.

Additionally, you can set up alerts and get notified of those events matching a filter expression.

Installing Falco

Helm is one of the preferred methods for installing Falco on Kubernetes. Using the Falco Helm 
chart, you can install Falco in a few seconds with a simple command. It provides an extensive set 
of configuration values to start Falco with different configurations.

To deploy Falco with default configuration on a cluster where Helm is deployed, run:

helm install --name falco stable/falco

To remove Falco from your cluster run:

helm delete falco

https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://falco.org
https://sysdig.com/opensource/falco/
https://github.com/falcosecurity/kubernetes-response-engine
https://github.com/falcosecurity/kubernetes-response-engine
https://github.com/kubernetes/helm
https://github.com/kubernetes/charts/tree/master/stable/falco
https://github.com/kubernetes/charts/tree/master/stable/falco


60

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e This method provides several advantages:

• All of the benefits of installing Falco as a Kubernetes DaemonSet, so you don’t need to 
repeat the deployment on new nodes that will get Falco automatically.

• Easier, faster and automated.

• Configuration and rulesets managed by the chart, creating portable and repeatable 
configuration.

• Bundles some integrations out-of-the-box, like Kubernetes RBAC permissions.

You have more details about this installation method on “Automate Sysdig Falco Deployment 
Using Helm Charts”. You can check other installation methods and options in the Falco 
documentation.

Anatomy of a Falco rule

Let’s inspect a Falco rule to learn how they are built.

- rule: example rule (nginx). this is the human name for the rule. 

  desc: detect any listening socket outside our expected one. 

  condition: evt.type in (accept,listen) and (container.image!=myregistry/

nginx or proc.name!=nginx or k8s.ns.name!=”load-balancer”) 

  output: this is where i write the alert message and i provide some extra 

information (command=%proc.cmdline connection=%fd.name). 

  priority: WArninG

In the condition field, we define our abnormal behavior:

evt.type in (accept,listen) and (container.image!=myregistry/nginx or proc.

name!=nginx or k8s.ns.name!=”load-balancer”)

This rule detects any listening socket outside of our expected one, which is:

• The container image is myregistry/nginx.

• The listening process inside that container is nginx.

• The Kubernetes namespace is load-balancer.

Anything else should trigger an alert.

This is a good example, as it combines conditions from different sources:

• System call events: evt.type = listen, evt.type = mkdir, evt.type = setns, etc.

• Docker metadata: container.image, container.privileged, container.name, etc.

• Process tree information: proc.pname, proc.cmdline, etc.

• Kubernetes namespace metadata: k8s.ns.name, k8s.pod.name, etc.

Falco rules provide the flexibility and expressiveness needed to create accurate security rules that 
fully understand your operational entities.

https://sysdig.com/blog/falco-helm-chart/
https://sysdig.com/blog/falco-helm-chart/
https://falco.org/docs/installation/
https://falco.org/docs/installation/


61

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e Securing NGINX with Falco

Falco ships with a comprehensive set of out-of-the-box rules. Let’s see how to enable them to 
detect abnormal behavior in NGINX, in particular, the execution of an ls command:

First, we copy the rule to our Falco installation:

# cp ~/falco-extras/rules/rules-nginx.yaml /etc/falco/falco_rules.local.yaml

Then, restart Falco for the changes to take effect:

# service falco restart

If you run a docker image and execute a command inside of it, an alert will trigger:

$ docker run -d -P --name mynginx nginx 

$ docker exec mynginx ls 

$ cat /var/log/falco.log 

11:03:13.464648222: notice unexpected process spawned in nginx container 

(command=ls  pid=26942 user=root mynginx (id=4f94bdd87187) image=nginx)

The ls command is not a whitelisted binary in this template.

You will probably save a considerable amount of time using these default Falco security rulesets. 
However, keep in mind that every version or even tag of a Docker container image is unique, and 
may have differences in user-defined data directories, binary paths, scripts that need to access 
some external port or device, or configuration. You will need to adapt the templates to your 
specifics before actually using them in production.

If you want to use these rulesets from the library, plus you own customization with the Helm 
chart, use this script to generate the Helm configuration:

$ git clone https://github.com/draios/falco-extras.git 

$ cd falco-extras 

$ ./scripts/rules2helm rules/rules-traefik.yaml rules/rules-redis.yaml > 

custom-rules.yaml 

$ helm install --name sysdig-falco-1 -f custom-rules.yaml stable/falco

There are complete instructions, practical examples and more information about the library of 
Falco default rulesets in the “Protect your Docker containers using Falco security rules”.

https://github.com/draios/falco-extras/blob/master/rules/rules-nginx.yaml
https://sysdig.com/blog/docker-falco-security/


62

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

Seccomp
Seccomp enforces security by sandboxing the processes, reducing the potential attack surface by 
limiting the actions that a process can perform. Seccomp is a mechanism in the Linux kernel that 
allows a process to make a one-way transition to a restricted state where it can only perform a 
limited set of system calls.

While in the restricted state, if a process attempts any other system calls, it is killed via a 
siGKiLL signal. In its most restrictive mode, seccomp prevents all system calls other than read(), 
write(), _exit() and sigreturn(). This would allow a program to initialize and then drop into a 
restricted mode where it could only read from/write to already-opened files.

Here’s an example of using seccomp() in strict mode:

#include <fcntl.h> 

#include <stdio.h> 

#include <unistd.h> 

#include <string.h> 

#include <linux/seccomp.h> 

#include <sys/prctl.h> 

 

int main(int argc, char **argv) 

{ 

        int output = open(“output.txt”, O_WrOnLy); 

        const char *val = “test”; 

 

        printf(“calling prctl() to set seccomp strict mode...\n”); 

        prctl(Pr_set_seccOMP, seccOMP_MOde_strict); 

 

        printf(“Writing to an already open file...\n”); 

        write(output, val, strlen(val)+1); 

 

        printf(“Trying to open the file for reading...\n”); 

        int input = open(“output.txt”, O_rdOnLy); 

 

        printf(“you will not see this message--the process will be killed 

first\n”); 

}

https://en.wikipedia.org/wiki/Seccomp


63

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e When executed, this program generates the following output:

 

$ ./seccomp_strict 

calling prctl() to set seccomp strict mode... 

Writing to an already open file... 

Trying to open the file for reading... 

Killed

You can see that after the program enables strict seccomp mode, it can write to stdout, which 
was already open, but an attempt to open a second file results in the process being killed.

Although restrictive and undoubtedly very secure, seccomp’s strict mode is… strict. You can’t do 
much other than read/write to already open files. Network activity, starting threads and even 
getting the current time via gettimeofday() are all blocked.

What if you want to combine application sandboxing with flexible policies or per-application 
profiles to allow for a richer (but still limited) set of actions? For example, instead of preventing all 
file opens, you wanted to allow them only for specific files?

Seccomp-bpf
seccomp-bpf is an extension to seccomp that allows specifying a filter that is applied to every 
system call. The filter is written using BPF, which had its origins in tcpdump, but has become 
essentially a virtual machine implementation in the Linux kernel. The BPF program is loaded 
into the kernel and its execution is triggered by a system call. This execution results in a filtering 
decision. Based on the results of the filter, the system call can be allowed, blocked or the process 
can be killed.

Here’s an example program using seccomp with a policy that adds open() to the set of allowed 
system calls. This example is heavily inspired and uses the seccomp-bpf.h header file from this 
very useful seccomp tutorial page.

#include <fcntl.h> 

#include <stdio.h> 

#include <string.h> 

#include <unistd.h> 

#include <assert.h> 

#include <linux/seccomp.h> 

#include <sys/prctl.h> 

#include “seccomp-bpf.h” 

void install_syscall_filter() 

{ 

        struct sock_filter filter[] = { 

                /* Validate architecture. */ 

                VALidAte_ArcHitecture, 

                /* Grab the system call number. */ 

 

 

http://www.tcpdump.org/
https://www.phoronix.com/scan.php?page=news_item&px=BPF-Understanding-Kernel-VM


64

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e  

                eXAMine_syscALL, 

                /* List allowed syscalls. We add open() to the set of 

                   allowed syscalls by the strict policy, but not 

                   close(). */ 

                ALLOW_syscALL(rt_sigreturn), 

#ifdef __nr_sigreturn 

                ALLOW_syscALL(sigreturn), 

#endif 

                ALLOW_syscALL(exit_group), 

                ALLOW_syscALL(exit), 

                ALLOW_syscALL(read), 

                ALLOW_syscALL(write), 

                ALLOW_syscALL(open), 

                KiLL_PrOcess, 

        }; 

        struct sock_fprog prog = { 

                .len = (unsigned short)(sizeof(filter)/sizeof(filter[0])), 

                .filter = filter, 

        }; 

        assert(prctl(Pr_set_nO_neW_PriVs, 1, 0, 0, 0) == 0); 

        assert(prctl(Pr_set_seccOMP, seccOMP_MOde_FiLter, &prog) == 0); 

} 

 

int main(int argc, char **argv) 

{ 

        int output = open(“output.txt”, O_WrOnLy); 

        const char *val = “test”; 

 

        printf(“Calling prctl() to set seccomp with filter...\n”); 

 

        install_syscall_filter(); 

 

        printf(“Writing to an already open file...\n”); 

        write(output, val, strlen(val)+1); 

 

        printf(“Trying to open the file for reading...\n”); 

        int input = open(“output.txt”, O_rdOnLy); 

 

        printf(“note that open() worked. However, close() will not\n”); 

        close(input); 

 

        printf(“you will not see this message--the process will be killed 

first\n”); 

}



65

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e When executed, this program generates the following output:

$ ./seccomp_policy 

Calling prctl() to set seccomp with filter… 

Writing to an already open file… 

Trying to open the file for reading… 

note that open() worked. However, close() will not 

bad system call

In strict mode, seccomp kills a process when it violates the policy. However, seccomp-bpf allows 
a number of actions to be taken based on the results of running the policy:

• Killing the process.

• Sending the process a siGsys signal.

• Failing the system call and returning a (filter-provided) errno value.

• Notifying an attached process tracer (see ptrace()), if one is attached. In turn, the 
process tracer can skip or even change the system call.

• Allowing the system call.

Probably the most widespread use of seccomp-bpf is by docker to isolate containerized 
applications. Docker launches processes with a seccomp profile that disables 44 system calls, 
preventing their use. Examples of disabled system calls are mount (mounting filesystems), reboot 
(reboot the host) and setns (change namespaces to try to escape the container).

AppArmor
In its most comprehensive form, if you add policies to sandboxing, the result is Mandatory 
Access Control systems, like AppArmor and SELinux. These strive for system-wide enforcement 
of policies that control the actions and resources that each program on a system can perform. 
Activities outside the policies can result in logged warnings, failing the system call, or killing the 
process.

https://docs.docker.com/engine/security/seccomp
https://en.wikipedia.org/wiki/Mandatory_access_control
https://en.wikipedia.org/wiki/Mandatory_access_control
https://wiki.ubuntu.com/AppArmor
https://selinuxproject.org/page/Main_Page


66

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e In AppArmor, policies are defined in profiles. A profile will apply to a given program, and 

will define the allowed operations and the resources it can access. Here’s an example of an 
AppArmor profile, taken from the Ubuntu AppArmor wiki:

# From /etc/apparmor.d/usr.sbin.tcpdump on ubuntu 9.04 and  

https://wiki.ubuntu.com/AppArmor#Example_profile 

 

#include <tunables/global> 

 

/usr/sbin/tcpdump { 

  #include <abstractions/base> 

  #include <abstractions/nameservice> 

  #include <abstractions/user-tmp> 

 

  capability net_raw, 

  capability setuid, 

  capability setgid, 

  capability dac_override, 

  network raw, 

  network packet, 

 

  # for -d 

  capability sys_module, 

  @{PrOc}/bus/usb/ r, 

  @{PrOc}/bus/usb/** r, 

 

  # for -F and -w 

  audit deny @{HOMe}/.* mrwkl, 

  audit deny @{HOMe}/.*/ rw, 

  audit deny @{HOMe}/.*/** mrwkl, 

  audit deny @{HOMe}/bin/ rw, 

  audit deny @{HOMe}/bin/** mrwkl, 

  @{HOMe}/ r, 

  @{HOMe}/** rw, 

 

  /usr/sbin/tcpdump r, 

}

This profile begins by stating that the rules will apply to /usr/bin/tcpdump, and then declares 
what tcpdump will be able to do, including:

Permitted linux capabilities: net_raw, setuid, setgid, dac_override

Permitted network operations: raw, packet

Allowed files: /proc/bus/usb and its children, files below $HOMe, and /usr/bin/tcpdump itself.

Disallowed files: any dot-files or dot-directories below $HOMe and anything below $HOMe/bin. 
Audit deny also indicates that attempts to access these files should be logged.

https://wiki.ubuntu.com/AppArmor#Example_profile
https://wiki.ubuntu.com/AppArmor#Example_profile
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://gitlab.com/apparmor/apparmor/-/wikis/AppArmor_Core_Policy_Reference#network-rules


67

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

SELinux
Although conceptually similar to AppArmor, SELinux significantly differs on its implementation. 
While AppArmor profiles are oriented around processes, SELinux policies are much more 
complex. They apply separately to actors, actions and targets, with a whole middleware of 
types defining the policies for each in different places. It’s because of this that SELinux uses a 
combination of policy files and file attributes.

It’s not within the scope of this guide to explain all of those SELinux concepts here, but we invite 
you to check this tutorial for a longer but more thorough introduction.

Having said that, let’s briefly look at the set of policies for /usr/sbin/tcpdump to see how 
it’s allowed to access raw sockets (the equivalent to the net_raw capability in the previous 
AppArmor example).

As said before, SELinux uses file attributes. Once configured in a system, you can use ls -Z to 
show the security context information of a file. For tcpdump, it would be something like this:

$ ls -Z /usr/sbin/tcpdump 

-rwxr-xr-x. root root system_u:object_r:netutils_exec_t:s0 /usr/sbin/

tcpdump

Take a look at the fourth column. There, the security context information includes a user 
(system_u), a role (object_r), a type (netutils_exec_t) and a level (s0).

In this case, it means that when someone runs tcpdump, the running process changes to a 
security context with the netutils_t type.

We can use the SELinux search tool sesearch, to show the domain transitions involving a given 
entrypoint (netutils_exec_t for tcpdump), when related to files:

$ sesearch -t netutils_exec_t -c file -p entrypoint -Ad 

Found 1 semantic av rules: 

   allow netutils_t netutils_exec_t : file { ioctl read getattr lock 

execute execute_no_trans entrypoint open } ;

If we want to see what linux capabilities tcpdump has, or any other program with the context 
netutils_t, we can use sesearch again:

# sesearch -t netutils_t -c capability -Ad 

Found 1 semantic av rules: 

   allow netutils_t netutils_t : capability { chown dac_read_search setgid 

setuid net_admin net_raw sys_chroot } ;

https://wiki.gentoo.org/wiki/SELinux/Tutorials


68

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

Seccomp vs AppArmor and SELinux
The distinction between AppArmor, SELinux and Seccomp can be fuzzy at times. They all rely on 
the same mechanisms–kernel-level interception/filtering of system calls, driven by per-process 
policies. However, there are some distinctions.

The policy languages used by AppArmor and SELinux differ from each other with respect to 
ease of use and specific terminology, but are generally richer and more complex than seccomp. 
AppArmor and SELinux allow for defining actors (generally processes), actions (reading files, 
network operations), and targets (files, IPs, protocols, etc.), where seccomp is limited to a simple 
list of system calls and arguments.

Additionally, seccomp is voluntary. Processes have to willingly drop into a restricted state by 
calling prctl(Pr_set_seccOMP, …), while in Mandatory Access Control systems, the policy is 
defined and loaded before a process is run.

Challenges implementing abnormal 
behavior detection
Whatever runtime security solution you choose, there are several issues you’ll eventually face. 
For example, defining what is considered abnormal behavior for each of your containers is going 
to take some time. And that work will require some experimenting and tweaking to ensure they 
aren’t missing edge cases of triggering false positives.

Here are some key resources and approaches that can save you a lot of work, and help you be 
ready for production sooner.

Out of the box rules
Why write each policy from scratch? Most of them are built using the same base rules, like “Don’t 
access files below $HOME” or “Don’t spawn terminals in containers”.

When evaluating a runtime security solution, check how many of those rules are available out-of-
the-box. Are they well maintained? Can you customize them? Is it easy to find what you need?

The cloud native security hub is a community-driven repository for Falco rules, among other 
security-related resources, for the most common cloud applications.

Our Sysdig Secure has a comprehensive library of customizable Falco rules. They are tagged by 
type of resource, application and compliance standard, so you can easily find what you need. 
Most importantly, they are actively maintained and updated to protect you from newly discovered 
attacks.

https://sysdig.com/blog/cloud-native-security-hub/
https://sysdig.com/product/secure/


69

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

Automated policy creation using machine learning
Most containerized applications have a predictable behavior, as they always read the same files 
or connect to the same network endpoints. Machine learning is great at detecting these kinds of 
patterns.

When evaluating your runtime security solution, look for machine learning features. Will they help 
you save time, or are they just a publicity stunt?

For example, Sysdig Secure offers image profiling. After some time learning the expected 
behavior of a given image, it can generate a base security policy for the image that you can later 
fine tune.

Avoiding false positives, tuning Falco rules.
False positives are unavoidable. You might have been too restrictive, forgotten some edge cases, 
or a new version of a container changed its behavior and you have to update your policies 
accordingly.

Although they aren’t harmful, it’s considered best practice to mitigate these events if possible. 
After all, they can cause considerable noise on the notification channels and steal attention away 
from the real incidents.

Identifying false positives generally involves the following steps:

1. Identify the most commonly occurring policy events.

2. Determine if the events are unique to the environment.

3. Address the false positives via rule changes.

4. Address the false positives via policy scope.

5. Disable the policy/policies that trigger the events.

To get a concrete example of the process, check out this guide on how to identify false positives 
on Falco rules with Sysdig Secure.

https://sysdig.com/product/secure/
https://sysdig.com/blog/sysdig-secure-2-4/
https://docs.sysdig.com/en/docs/sysdig-secure/policies/threat-detect-policies/runtime-policy-tuning/


70

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e

Conclusion

Threat blocking and Incident remediation 
with open source tools
We’ve seen how Falco provides deep visibility into what’s happening inside containers. It also 
has Docker and Kubernetes native support, so it’s able to tell not only when a security incident 
happened, but also provide the appropriate metadata to investigate the issue. 

However, beyond detection, you also need to react fast. Because containers have short lifespans, 
it’s essential to find the culprit before the container causes any real damage, simply disappears 
or moves somewhere else. Automation is more important than ever, and writing response 
procedures as code playbooks is the best approach.

There are open source components that can be tied together to build a Kubernetes security stack:



71

K
u
b
e
r
n
e
t
e
s
 
s
e
c
u
r
i
t
y
 
G
u
i
d
e • Falco: Provides visibility and abnormal behavior detection. Its default ruleset library, 

the ones you can find in the cloud native security hub, and other resources offered by its 
community, provide you with a good starting point to protect the most popular images 
including kube-system components, Nginx, HAproxy, Apache, Redis, MongoDB, Elastic, 
PostgreSQL, etc.

• Nats: A messaging broker that can receive Falco security alerts and make them available 
to other parties.

• Kubeless: A Function as a Service framework for Kubernetes. It will subscribe and listen 
for events on NATS, executing different playbooks for incident response and attack 
mitigation, as well as automated actions written as code. For example, Kubeless will 
post a notification to Slack, connect to the Kubernetes API server to stop the pod, or 
create a Network Policy that will isolate the pod from the network.

Additionally, you could implement logging, audit and reporting integrating Falco with third party 
tools like Fluentd, Elastic and Kibana.

For installation and setup instructions, as well as examples on creating Kubeless functions, check 
out this “How to implement an open source container security stack” article.

https://falco.org
https://github.com/draios/falco-extras
https://securityhub.dev
https://nats.io/
https://kubeless.io/
https://sysdig.com/blog/oss-container-security-stack/


Guide

cOPyriGHt © 2020-2024 sysdiG, inc. 

ALL riGHts reserVed.

Guide-001 reV. d 11/24

G E T  P E R S O N A L I Z E D  D E M O

In the cloud, every second counts. Sysdig 
stops cloud attacks in real time by instantly 
detecting changes in risk with runtime 
insights and open source Falco. We correlate 
signals across workloads, identities, and 
services to uncover hidden attack paths 
and prioritize the risks that matter most.

Sysdig. Secure Every Second.

https://sysdig.com/request-a-demo/

	_9bwq1uq4nr3b
	_ksiyirblfpeu
	_cz36vf7s9zov
	_v5mjc39nun9m
	_d92qpmgpbn8j
	_ablg6nt0mmf5
	_f015utbwl64t
	_62u5xnr49wku
	_cknaypvcq86m
	_dvidb3cdt03l
	_gyxdqjmiknz9
	_ax1tfnkreluj
	_ug079as7xtde
	_xqovh918wimm
	_yrjwj7m47v9
	_t0ahr3tty45w
	_ujogrsltxff9
	_3m3bmll39c0w
	_rr9zmhgmc26h
	_4lre4ayc3l8q
	_i22uzjrzaa6x
	_f89lfres5ssk
	_t0udfaue7qt
	_xpks6475uz13
	_pt3rtw32n7qe
	_c1jst2mykumx
	_3dxp38ogvz1j
	_41zcs5wh4l2z
	_mfe50wm4wu4c
	_dtw7tmw97twb
	_kjsn9gezy8e3
	_b49g2b4ywcfd
	_7gso30edxdm9
	_6cuhk9qgvsca
	_2ic30fmeu5sk
	_qxfiq0p2vmw5
	_k96fbj2b0aji
	_8xswetby8wjg
	_chmkwgluqnc6
	_gogawww40jvo
	_a7lfj5ar7l93
	_ka75w1bmhbb
	Introduction
	Kubernetes attack surface
	Securing your container images 
and CI/CD pipeline
	Securing Kubernetes control plane
	Understanding Kubernetes RBAC
	Security at the pod level: K8s security content, PSP, and network policies
	Securing workloads at runtime
	Conclusion



