
Sysdig Platform
Architecture Guide

Platform
Architecture Guide

2

Contents

The Sysdig Secure DevOps Platform	 3

Key elements of the Sysdig Platform	 7

The Sysdig architecture: Built on open source foundation 	 10

Instrumentation needs to be transparent 	 10

ServiceVision adds rich context to ContainerVision	 13

Build: Accelerating secure development 	 20

Run: Running containers in production	 24

Respond: Reducing Mean Time to Respond (MTTR)	 29

Conclusion	 32

Platform
Architecture Guide

3

The Sysdig Secure DevOps Platform

As cloud and containers become the standard for application deployment, DevOps
practices become vital. Your cloud teams are accountable for application security,
compliance, performance, and availability. Your teams need tools that support a
secure DevOps workflow to accelerate deployment and confidently run cloud
applications in production.

Run RespondBuild

Sysdig Secure DevOps Platform

Vulnerabilities

SaaS

Configuration EventsAudit
LogsAlerts Syscall

Captures

A
pp

s
In

fr
a

Master Node Node

Event Forwarding/Audit/IRRegistry Security

Events Security
PoliciesMetrics

Co
nt

ex
t

CI/CD Security Alerts

Integrated into Your Cloud-Native Ecosystem

The Sysdig Secure DevOps platform embeds security, compliance, and monitoring
into your DevOps workflow. It is the only unified container security and monitoring
platform. With a single source of truth, Sysdig eliminates silos of information
between development, DevOps, and security teams. This unified data platform
enables DevOps teams to accurately triage an incident, quickly determine if the
incident is caused by misconfiguration or malicious attempt, and perform forensics
even after the container is gone. Your DevOps teams can report on vulnerabilities
affecting running images in specific namespaces and clusters. For example, if a new
CVE comes up, Sysdig Secure DevOps platform can help you quickly identify the
affected images in a particular public cloud region, namespace, cluster, etc., as well
as the team that owns the fix. With this approach, organizations can resolve issues

Platform
Architecture Guide

4

quickly by analyzing granular system data automatically correlated to cloud and
Kubernetes context.

Sysdig helps you deliver reliable and secure cloud applications and addresses the
essential use cases of running Kubernetes and containers in multi-cloud production
environments.

RespondRunBuild

Advanced
Workflows

Essentials
Workflows

Enterprise Tier

•	 Extended compliance controls

•	 Advanced threat prevention

•	 ML-based anomaly detection

•	 Advanced troubleshooting

•	 Incident response

•	 Forensics

•	 Runtime security

•	 Container/Kubernetes monitoring

•	 Apps/cloud services monitoring

•	 Compliance (PCI, NIST, CIS, etc.)

•	 Image scanning

Essentials Tier

Integrated into Your Cloud-Native Ecosystem

Unique ContainerVision with ServiceVision

•	 ContainerVision - Sysdig’s unique instrumentation that allows you to get deep
visibility into containers, network, application, and system activity without any
invasive instrumentation. Access to this deep system call data accelerates both
incident response and troubleshooting, helping your DevOps teams determine
root cause and resolve problems faster.

•	 	ImageVision - Identifies vulnerabilities and misconfigurations by automating
scanning within CI/CD pipelines and registries, as well as implementing registry
scanning inline. Blocks vulnerabilities pre-production and monitors for new
CVEs at runtime. Helps you map a critical vulnerability back to an application
and dev team.

Platform
Architecture Guide

5

•	 CloudVision - Enables a consolidated view of cloud activity using cloud logs.
Allows you to use cloud activity logs, like AWS Cloudtrail, for run-time threat
detection. Alert on changes to your AWS user permissions, S3 buckets, access
keys etc. by analyzing CloudTrail logs with Falco. Enables event audits, detects
events that are a threat, and raises a notification so you can quickly address
those security events.

•	 ServiceVision - Provides rich context using the metadata provided from
Kubernetes and your Cloud services to all of the data collected with
ContainerVision. Drill-down views for dashboards, metrics, and events gives your
team the flexibility to view security status across Kubernetes logical objects, such
as namespaces, deployments, and pods. This allows you to quickly identify which
team is responsible for resolving a vulnerability or an alert and then focus on
what data is relevant to them.

Platform agnostic security and monitoring capability that easily
integrates into your DevOps pipeline

•	 Platform agnostic - Consolidated monitoring, security, troubleshooting, and
forensics for multiple clusters across any cloud or infrastructure ensures a
consistent view.

•	 DevOps pipeline integration - Out-of-the-box integrations with the tools you
use today save time across the lifecycle.

•	 Common data platform - The same data provides the foundation for both
security and monitoring workflows, collected by a common agent and managed
in a common back-end.

Easy to adopt and scale

•	 SaaS-first delivery model - Get up and running in minutes and avoid the hassle
of managing on-premise software.

•	 Guided adoption and usage - Curated workflows and customizable dashboards
deliver immediate value and accelerate adoption.

•	 Scale - Sysdig scales to support the largest cloud deployments in the world
without compromising performance and stability.

•	 Isolation with Teams - The ability to define specific user groups by service,
application, or infrastructure helps DevOps teams give exclusive permissions to
support different user roles and isolate and secure data access.

Platform
Architecture Guide

6

Built on open source standards for investment protection

•	 Full Prometheus compatibility - Sysdig delivers scale and long-term metric
retention for Prometheus metrics. By maintaining full compatibility, including
support for Prometheus Query Language (PromQL), developers can build on their
investment in Prometheus and continue to use existing dashboards and scripts.

•	 Falco runtime threat detection - The Falco open source project provides the
rules engine for runtime threat detection and compliance validation.

•	 Sysdig open source project - The Sysdig open source project is widely
known, with over 10 million downloads, and is used by the community for
troubleshooting low level issues.

•	 Anchore engine - The Anchore engine open source container image scanning
tool analyzes packages and third-party libraries present in container images to
find known software vulnerabilities and report on content and licenses.

This paper provides a framework for describing how, where, and why Sysdig can
accelerate and ease your move to cloud-native applications and the ongoing
benefits it brings to your entire software development lifecycle.

This paper will also take you deep into the architecture of our Kubernetes visibility
and security platform. Not only will it help you understand how it works, but it will
help you understand how Sysdig’s unique approach can effectively support your
cloud-native journey.

Platform
Architecture Guide

7

Key elements of the Sysdig Platform

User’s Environment
Monitored and Secured Entities

Hosts

Database & Storage

External ToolsUser Interface

Programmatic Access

Sysdig Agent

Sysdig Engine
External SIEM or
Events Database

Sysdig APIs

Container Runtimes

Orchestration Platforms

Times Series Data
Security Insights

Alerts
Scanning

Compliance

Metrics database
Configuration database
Vulnerabilities database

Events database Secure APIs
Monitor APIs
PromQL APIs

Sysdig CLI
Terraform

Inline scanning
Other Integrations

Sysdig Protocol, Image
scanning data, Metrics,

Metadata, Security Events

docker cri-o containerD

kubernetes openshift

Security Events

Notifications

Sysdig Platform Back End
SaaS

Splunk

Syslog

Qradar

MCM

Mail

Slack

Webhook

Write Process Read

PrometheusUsers

Grafana

Cloud Pub/Sub

The Sysdig agent

Sysdig will collect monitoring and security information from all of the target entities.
To achieve this, one Sysdig agent should be deployed in each host. These hosts can be:

•	 The nodes that make up a Kubernetes or OpenShift cluster

•	 Virtual machines or bare metal

•	 Residing on-premises in a customer data center

The Sysdig agent can be installed as a container itself using a Helm chart,
Kubernetes operator, etc. The process of installing the agent is completely
automated following the steps detailed on the platform onboarding instructions.

Platform
Architecture Guide

8

Once the agent is installed on the host it will automatically start collecting
information from

•	 the running containers

•	 container runtime

•	 the orchestration API (Kubernetes, OpenShift, etc.)

•	 metrics from defined Prometheus endpoints

•	 auto-detected JMX sources

•	 StatsD

•	 integrations via app checks

•	 the host itself using kernel headers or modules and
extended Berkeley Packet Filter (eBPF)

The Sysdig agent will maintain a communication channel with the Sysdig backend
that will be used to encapsulate messages containing the monitoring metrics,
infrastructure metadata, and security events. The channel is protected using
standard TLS encryption and transports the data using binary messages. Using this
channel, the Agent can transmit data but also receive additional configuration from
the backend, such as Security runtime policies or benchmarks.

Sysdig Agent Resource consumption is subjective to the size of and load on
your host. At a minimum, the agent requires 2% of total CPU and 512 MiB of
memory.

Sysdig backend

The Sysdig backend can be directly used in its SaaS version, thus being managed
transparently by Sysdig, or it can also be installed on the customer premises. This
distinction does not affect the actual operation of the platform described below.

Once the agent messages are received in the backend, they are processed and
extracted into data available to the platform - time series, infrastructure and
security events, and infrastructure metadata.

Sysdig backend can not only scale vertically to handle the load of individual data
needs, such as capacity for metrics, but can also scale horizontally for processing
and scalability, such as the needs of thousands of agents or ingestion of millions of
metrics.

https://docs.sysdig.com/en/host-requirements-for-agent-installation.html#al_UUID-651833b8-8b1d-038c-dd01-6163c9434458_UUID-3c0e1f87-4a94-773e-24a8-c2e643741dd0

Platform
Architecture Guide

9

Main data flow for the Sysdig platform:

•	 Extraction and post-processing of the metric data from the agent so that full time-
series, with all of the necessary infrastructure metadata, is available to the user.

•	 Maintenance of the infrastructure metadata (most notably Kubernetes state) so
that all events and time series can be enriched and correctly grouped.

•	 Storage of time series and event data.

•	 Processing of time series data to calculate alert triggers.

•	 Queue security events triggered by the agents to be shown on the event feed,
pushed to notification channels and forwarded via event forwarder to platforms
like Splunk, Syslog or IBM MCM / Qradar.

•	 Aggregate and post-process other security data like container fingerprints used
to generate container profiles or security benchmark results.

•	 Store post-processed data in Sysdig platform internal databases where it can
be combined by the API service to create dashboards, event feeds, vulnerability
reports, or security benchmarks.

Sysdig APIs

The Sysdig platform provides several ways to consume and present its internal data.
All APIs are RESTful, HTTP JSON-based, and secured using TLS. The same APIs are
used to power the Sysdig front-end, as well as any API clients such as sdc-cli.

These API’s enable use cases like:

•	 User access to the platform via the Sysdig user interface.

•	 Programmatic input and extraction of data, for example:

	y Automatic user creation.

	y Terraform scripts to save or recover configuration state.

	y Inline scanning to push scanning results from the CI/CD pipeline.

	y Instrumentation using the sdc-cli.

	y PromQL API interface that can be used to connect any PromQL compatible
solutions, such as Grafana.

https://docs.sysdig.com/en/sysdig-cli-for-sysdig-monitor-and-secure.html

Platform
Architecture Guide

10

The Sysdig architecture: Built on open source foundation
The Sysdig Secure DevOps Platform starts with the idea that effectively operating
containers in production is fundamentally a data problem. Our belief from the
beginning has been that if we can take a radically different approach to create
visibility in complex, distributed, ephemeral container environments, we could
solve a number of operational challenges over time, including monitoring, run-time
security, vulnerability management, incident response, and more.

At the same time, driven first by Docker and now by Kubernetes, the cloud-native
movement is heavily rooted in open source building blocks. This community effort
allows enterprises to get started with little to no cost and provides a massive
community that’s constantly improving key projects. Sysdig is no exception.

Sysdig believes that open source tools are an essential part of the cloud-native
ecosystem. Developers shouldn’t be required to pay up-front to experiment or use
tooling as they figure out their cloud-native strategy. Instead, they should have
access to key building blocks through open source.

Sysdig is based on the open-source Linux troubleshooting and forensics project
by the same name (sysdig). The open-source project allows you to see every single
system call down to process, arguments, payload, and connection on a single host.
As we’ll describe, this data is dynamically mapped to containers, microservices,
clouds, and orchestrators in a way that is at once powerful and simple to use in the
commercially supported Sysdig platform.

Instrumentation needs to be transparent
In static or virtual environments, it was simple to run an agent on a host and to
configure the agent based on the relevant applications. In container environments,
however, this approach doesn’t work:

•	 You can’t place an agent within each container without destroying a key value of
containers : simplicity.

•	 With applications and containers coming and going, you can’t manually configure
agent plug-ins to collect relevant app-level metrics. And you certainly cannot
depend on manual configuration for per-service security policies.

With these new demands, the act of instrumenting must be as transparent as
possible, requiring as little human intervention as possible. Events or actions on the
target system, infrastructure metrics, application metrics, service response times,
custom metrics, and resource/network utilization should be ingested without any
effort from within the container. It certainly shouldn’t require efforts with the spin-
up of each additional container.

There are two possible approaches to achieving this. First are pods, a concept
created by Kubernetes. A pod is a group of containers that share a common

Platform
Architecture Guide

11

namespace. As a consequence, a container inside a pod can see what the other
containers in the same pod are doing. For instrumentation agents, this is often
referred to as a “sidecar” container.

The positive here is that this is something relatively easy to do in Kubernetes. The
downsides, however, are worrisome:

•	 Resource consumption can be high if you have many pods on a machine - it’s a
bit like having a monitoring agent per process(!).

•	 You create dependencies as well as additional attack surfaces within that pod.
That means that if your monitoring sidecar has performance, stability, or security
issues, it can wreak havoc on your applications.

•	 Another variant of the side-car method the ld_preload method where binaries
are injected into a container, much like auto installing an agent into every
container. This has the downsides of both agent based and sidecar based
instrumentation, as well as often causing stability issues due to uncontrolled /
untested changes of a container.

The second model is per-host, transparent instrumentation. This transparent
instrumentation captures all applications, containers, custom metrics (Prometheus,
StatsD, and JMX) and host metrics with a single instrumentation point and sends it
to a container per host for processing and transfer. This eliminates the need to turn
everything into a custom metric, something we’ve seen many people resort to.

Unlike sidecar models, per-host agents drastically reduce resource consumption
of monitoring agents and require no modification to application code. It does,
however, require a privileged container and a kernel module.

Sysdig chose to do the latter. We call this “ContainerVision,” our shorthand for this
technical approach. You’ll see here that choosing this model was one of the most
important design decisions we made.

Host

Filesystem

Sysdig Agent

Network
EBPF Probe

KERNEL syscalls

Host Metrics statsd/jmx

Security Events Prometheus

Sysdig Backend

App 1 App 2 App 3 App n

Kubernetes

01110101
00001010
10001010
10101001

Platform
Architecture Guide

12

Despite the greater complexity this represented in building the Sysdig agent, we
believed this approach would provide us with several advantages:

•	 To unify many of the common operational activities necessary for production
systems like security, monitoring, troubleshooting, forensics.

•	 To collect more data with lower resource overhead.

•	 To reduce operational overhead for small, agile teams.

We were also confident that our instrumentation approach represents a reduced
threat to environments versus complex networking and a high density of agents in your
environment. To reduce concerns, we open-sourced our kernel module as part of the
Sysdig Linux and container visibility command-line tool.

ContainerVision in-depth

ContainerVision is a core element of what makes Sysdig’s approach different.
Our architecture is very similar to that of tcpdump and Wireshark. This is not by
chance - Sysdig was created by one of the co-creators of Wireshark. First, events
are captured in the kernel by a small driver, called sysdig-probe, which leverages a
kernel facility called tracepoints.

Tracepoints make it possible to install a “handler” that is called from specific
functions in the kernel.

Currently, Sysdig registers tracepoints for system calls on enter and exit, as well
as for process scheduling events. Sysdig-probe’s handler is limited to copying the
event details into a shared read-only ring buffer, encoded for later consumption.
The reason to keep the handler simple, as you can imagine, is performance, since
the original kernel execution is “frozen” until the handler returns. The freeze is on
the order of nanoseconds, that’s all the driver does. The rest of the magic happens
at the user level.

The event buffer is memory-mapped into user space so that it can be accessed
without any copy, minimizing CPU usage and cache misses.

Two libraries, libscap and libsinsp, then offer support for reading, decoding, and
parsing events. Specifically, libscap offers trace file management functionality,
while libsinsp includes sophisticated state tracking functionality (e.g., you can use
a file name instead of an FD number) and also filtering, event decoding, a Lua JIT
compiler to run plug-ins, and much more.

Finally, open-source Sysdig tops it off as a simple wrapper around these libraries,
while the agent for the commercial platform uses the same core but simultaneously
(a) forwards data to the backend and (b) enforces security policies.

Sysdig also now supports eBPF as an alternative to our kernel module-based
architecture described above. eBPF – extended Berkeley Packet Filter – is a Linux-
native in-kernel virtual machine that enables secure, low-overhead tracing for
application performance and event observability and analysis.

Platform
Architecture Guide

13

There are several motivations for tying ContainerVision into eBPF. One is simply to
take advantage of maturing technology that is already a part of the base operating
system. This makes management of observability that much easier and frictionless.
Another reason why eBPF makes sense is the advent of container-optimized
operating systems. These solutions, like Container-Optimized OS (COS) from
Google Cloud Platform or AWS Bottlerocket, feature an immutable infrastructure
approach that disallows kernel modules altogether. By tapping into eBPF, users
of these newer OS approaches achieve the same level of container observability
Sysdig has delivered for some time with our kernel module.

ContainerVision is a key advantage of Sysdig’s architecture. The tracing overhead
of Sysdig’s instrumentation is very predictable and makes it ideal for running in
production environments. To go a little deeper on this, read DTrace vs strace vs
sysdig: A technical discussion.

The Sysdig open source troubleshooting tool gives you both a command-line
interface and a curses-based interface to all of the rich data collected with
ContainerVision for a single host.

For our monitoring application, we use these same system calls to extract the relevant
metrics up and down your stack, and create an htop-like interface across your
distributed environment. And our security application uses the same agent, same
data, and same backend, but focuses on events that represent security violations.

Our belief, however, is that performance metrics or security events alone are not
enough once you’re dealing with containers. Next, let’s see if we can make sense
of it all.

ServiceVision adds rich context to ContainerVision
In a container and microservices environment, Linux system calls are a rich source
of data about containers, Kubernetes, hosts, and application health. By tapping
into system kernel traces, Sysdig agent has the ability to see every process, every
container, every service, every action, and every metric in a uniquely multi-
dimensional way without compromising cardinality or accuracy. The Sysdig agent
can auto-detect and auto-ingest additional data sources such as Prometheus,
statsd, container, or orchestrator events. This rich data source provides unique
insights into health and security of containerized applications through their full
lifecycle from development to production. Thus, it protects your containerized
applications against malicious players as well as vulnerabilities created by common
misconfigurations.

Granular syscall data is dynamically mapped to containers, microservices, clouds,
and orchestrators in a way that is immediately powerful and simple to use in the
commercially supported Sysdig platform. A rich set of great metrics are useless
if they aren’t relevant. With ServiceVision, your granular data is mapped to your
container orchestrator to understand how you’ve built your systems. The core
advantage here is that you don’t waste time designing groupings or laying-out your

https://sysdig.com/blog/sysdig-vs-dtrace-vs-strace-a-technical-discussion/
https://sysdig.com/blog/sysdig-vs-dtrace-vs-strace-a-technical-discussion/

Platform
Architecture Guide

14

services, you’ve already done this within Kubernetes. You’ll have familiar keys /
names to reference when looking for data or views. This unique ability to quickly
zero in to the few relevant metrics from the millions is one of the key reasons
customers choose Sysdig to help mange the complexity of Kubernetes at scale.

The ability to pull this metadata and apply it to your view can be a really simple
way to make your data relevant to different users. Instead of forcing users to wade
through thousands, possibly even millions of different objects (security events,
containers, metrics, etc.), we allow you to focus and present only what is relevant to
them. This saves time, provides easy snapshots of what is healthy, and accelerates
root cause analysis (and as such, time-to-fix!). We call this ability to collect and
apply metadata, ServiceVision.

Kubernetes Native Monitoring & Security

ServiceVision highlighted earlier is core to a lot of the Kubernetes integration. You
don’t want to have to manually create groupings and individually apply policies to
each one. With Sysdig, you can use what you’ve already built and apply policies and
rules in a flexible way that adapts to both what you’ve deployed today, as well as
what you will deploy tomorrow. Tag a policy as ‘production’ and any new workload
using this key will automatically inherit it. Protect a production cluster, and
everything that happens in that cluster in the future will also be protected.

Platform
Architecture Guide

15

Application and Cloud Services Monitoring

Prometheus monitoring is another key building block in the open-source
community, providing a metrics format and a method to scrape metrics from
applications. While Sysdig didn’t create Prometheus, we actively contribute to
the project and have incorporated its capabilities into our platform. For example,
you can use standard PromQL queries to view and analyze your metrics stored in
Sysdig. Sysdig has created promcat.io, a website for the Prometheus community
where users can find application monitoring resources for Prometheus, ready to
use in Sysdig platform, or with other open source tools. These resources have been
collected, actively tested, and maintained by a dedicated team of engineers.

How it Works

Collect Ingest | Analyze | Query Workflows

Prometheus metrics +
System metrics +

Network metrics +
CLoud Service metrics +

custom metrics:
StatsD + JMX

Millions of Metrics
High Resolution

Long-Term Retention

PromQL

Clusters

Nodes

Native Kubernetes

 +

Cloud Services

Applications

Pods +

Prometheus Instrumented
PromQL -or-
Sysdig API

Sysdig metric
store

Sysdig Monitor

Nodes

Alerts

Correlation

Controls

 Webhook ...more

https://promcat.io/

Platform
Architecture Guide

16

To further leverage the unique visibility created by our original project, we built an
open-source security tool called Falco. Falco combines the visibility of open source
sysdig with a rules engine that constantly monitors system events for violations of
policies at run-time. Our enterprise offering then allows for the enforcement of
these policies, compliance, and auditing on top of this rich data.

Falco Agent

Falco

DIY Outputs/Responses

Host Kernel/K8s node

Alerting

Falco
Rules

K8s audit logs
and metadata

Suspicious
events

Syscall
data

eBPF Probe

Falco for Runtime Threat Detection

Falco is becoming the standard CNCF project for runtime security detection and is
already widely adopted in thousands of clusters. It has an extensive community that
not only helps develop and improve the product, but also helps crowdsource new
rules and continually validate existing ones. The Falco community is encouraged by
the Sysdig open source team (who initially developed Falco), and continues to work
with the community and CNCF to drive the future of the tool.

Falco’s data sources are both low level system calls (i.e., being able to detect SSH
connections at the host or container level, detecting a database server making
outbound network connections, a message-bus forking processes and running
command line scripts, etc.) as well as Kubernetes audit API (i.e., a user launches a
privileged container, a configmap containing clear text credentials, sensitive host
filesystem areas are mapped to a container, etc.).

Falco is embedded into the Sysdig Secure DevOps platform, providing runtime
security visibility. Within the platform, the open source functionality is expanded
with a simplified UI, easy rules editor, and rules tagging to quickly filter relevant

Platform
Architecture Guide

17

rules. It is also extended with the Sysdig native Kubernetes integrations, allowing
quick and flexible application of rules to different Kubernetes objects. Falco rules
can detect anomalous activities and flag compliance issues. Sysdig provides full
commercial support for Falco rules used within the Secure DevOps platform.

Runtime Security

Falco Sysdig Secure

Manage
Curated rules
Orchestration

Scale

Centralized
collection
Metadata

Optimize
k8s engine v3

Audit logs to kafka
Resource limits

Expand
UI

Alerting
Reporting
Captures

Audit logs
Fargate

Image Scanning

Connect
SIEM integrations

Notifications
Teams

CI/CD integration

DIY Outputs/Responses

Host Kernel/K8s node Host Kernel/K8s node

Alerting

Falco
Rules

K8s audit logs
and metadata

Suspicious
events

Built-in Falco
engine

Syscall
data

Syscall
data

eBPF Probe eBPF Probe

Falco Agent Sysdig Agent

vs

To further enrich the data used to secure your environment, Sysdig has also
integrated Anchore into the platform. What Falco does for run-time, Anchore does
for build-time; it allows you to implement and enforce vulnerability management
policies and scan your container images before they ever go into production.

Anchore Container
Certification

•	 Container image
•	 Container image analysis
•	 Container policy

evaluation

Certification
Pass/Fail Gate

Container
Image Build

New Image
Push

Image inspection

Image analysis

Policy evaluation

Anchore Engine

CI/CD

Orchestration

Container
Manager

Platform
Architecture Guide

18

The Sysdig Secure DevOps Platform also integrates with VulnDB, a comprehensive
and actionable source of vulnerability intelligence, to provide richer findings
around vulnerabilities in third-party libraries and dependencies. Combined with
the wide range of vulnerability databases the Sysdig platform checks against, the
comprehensive data from VulnDB enables you to more effectively identify, track,
and reduce security risk.

Sysdig’s commercial offering unifies all of your operational data and turns it into
insight. Starting with thousands of metrics and events for every application,
container, and host, the Sysdig platform then enriches the data to give you precise,
in-context, views of your applications and microservices. Sysdig then provides you
with apps that deliver key visualizations to help you achieve your specific workflows.

The Sysdig Secure DevOps platform provides a unified view of the risk, health,
and performance of your entire environment. It is designed to intelligently surface
the services and components in your environment with the most issues and
highest severity.

•	 Sysdig Monitor delivers performance and health monitoring with deep telemetry
data collected from your containers, applications, orchestration, and clouds.

•	 Sysdig Secure enables vulnerability management, compliance and security policy
enforcement, auditing, and run-time protection.

All of this capability is provided with unified host instrumentation, a unified
data backend, and powerfully simple user interfaces that allow your DevOps,
DevSecOps, service owner, and developer teams to take advantage of all of the
available rich data. With this as a baseline, let’s dig in further so you can understand
how Sysdig impacts and supports customer use cases across each facet of the
container lifecycle.

https://sysdig.com/secure-devops-platform/
https://vulndb.cyberriskanalytics.com/

Platform
Architecture Guide

19

Development - Build:

•	 Developers must ensure they push vulnerability-free applications and are
responsible for security scanning early in the CI/CD pipeline.

•	 Sysdig helps detect vulnerabilities and misconfigurations with a single workflow.

Operations - Run:

•	 Sysdig also provides the ability to report on vulnerabilities affecting running
images in specific namespaces, clusters, and more. For example, if a new CVE
comes up, Sysdig can help you quickly identify the affected images in a particular
AWS region, namespace, cluster, etc., as well as the team that owns the fix.

•	 Sysdig helps you prevent and detect threats at runtime without impacting
performance.

•	 Sysdig also allows you to monitor cloud applications, infrastructure to maximize
availability, and performance.

Incident Response and Troubleshooting - Respond:

•	 Your DevOps team needs to accurately triage an incident and quickly determine
if it is a misconfiguration or a malicious attempt.

•	 Sysdig allows you to do incident response and troubleshooting, and conduct
forensics even after the container is gone.

Validate compliance end to end:

•	 Verify configuration meets CIS best practices such as containers running as root,
and ensure ssh is not run within containers.

•	 Secure application compliance with NIST, PCI, SOC2, etc.

•	 Use falco rules to detect anomalous activity and flag compliance issues.

Along with these areas, we’ll next dig further into the architecture so you can see
each piece in more detail.

Platform
Architecture Guide

20

Build: Accelerating secure development

Businesses need to embed security earlier in the development lifecycle. Given how
containers will change your development process, proactive security measures
within the development of containerized and microservice-based applications move
from a desire to a necessity. And given the dramatic acceleration of code delivery,
it’s no surprise that developers expect these additional requirements to be met
with enhanced resources and tools to give them visibility into the performance and
security posture of their code before it goes into production. Sysdig is a critical
tool for allowing development teams to deliver more reliable, secure code more
efficiently.

Shifting Security Left: Introducing image scanning and vulnerability
management into the development process.

Sysdig Secure’s vulnerability management capabilities help organizations bring
application security, compliance, and quality closer to the developer. Through
native integrations with common tooling in the software delivery chain, Sysdig
Secure enables teams to scan for, block, and remediate security issues before a
build is completed or a container is ever deployed. Sysdig Secure starts with image
scanning to perform an inspection of an image and generate a detailed analysis of
the contents of the image, including:

•	 Official OS packages

•	 Unofficial OS packages

•	 Configuration files

•	 Language Modules – NPM, PiP, GEM, and Java Archives

•	 Image metadata and more

Sysdig Secure then automatically correlates the contents of the image with
vulnerability feeds to give insight into known vulnerable packages, and files. Our
vulnerability feeds are continuously updated vulnerability and package data
from OS vendors, package repositories, VulnDB, and the National Vulnerability
Database (NVD).

Platform
Architecture Guide

21

Inline Scanning

Local Scanning Benefits
•	 No need to expose your

registry to external networks
•	 Sensitive content is never

shared outside of customer
environment

•	 Only push images that have
passed scanning policies

Build image
myregistry/
image:tag

Push to
runtime

You stop the
pipeline and

notify the
developer

You push
to registry

and then to
production.

1

8

Scan evaluation
results and pass/fail

Check image metadata
against scanning policies

CI/CD scans the image
locally, using the
CI/CD worker nodes

CI/CD submits a scanning
request uploading image

container metadata Scan evaluation

6

3

4

5

Push image
to repo

7

Resulting
container image

Policy
evaluation

Runtime

Private
registry

2

Fail Pass

Platform
Architecture Guide

22

Integrate Image Scanning and Governance
Throughout the Entire Image Lifecycle

You can easily configure Sysdig Secure to automatically scan images as part of your
build process through either a native Jenkins plugin or APIs. You can fail builds,
trigger warnings, and enforce compliance easily by including image scanning every
time a container goes through your build process.

Sysdig Secure scans images stored in any Docker V2 compatible registry such as
CoreOS Quay, Amazon ECR, Docker Private Registries, Google Container Registry,
JFrog Artifactory, Microsoft ACR, SuSE Portus, and VMware Harbor.

The solution makes it easy for you to configure policies for your build pipeline or
your registries to evaluate images against user-defined policies for vulnerabilities,
operating system packages, third-party packages, software libraries, Dockerfile
checks, file contents, configuration files, and image attributes.

All of these procedures are tied to alerting. If unscanned images are deployed into
production environments, if a new vulnerability is discovered in a package of an
image that’s running in production, or if the scan status of one of your running
images changes, you will be proactively notified.

For all run-time vulnerability management, Sysdig ties back information about
unscanned images or scan results to Kubernetes clusters, namespaces, and
deployments to categorize risk and prioritize image patching and upgrades. This
unique ability to isolate issues by Kubernetes metadata allows you to put your
efforts in the right place at the right time.

Platform
Architecture Guide

23

Software performance during development and test

Even if your latest software is vulnerability free, do you know how well it performs?
After all, a development team that only delivers secure software isn’t doing its job
- they need to deliver high performing, reliable, secure software that makes your
company more competitive and your customers happier.

This process of performance testing (or the reverse view of regression testing) is
well understood by developers: build software, run it through a battery of tests, and
compare its performance to alternative or previous versions of the code. Typical
questions a developer asks include:

•	 What’s the response time of my service?

•	 Do common activities consistently cause any errors?

•	 What is the underlying resource utilization (CPU, Memory, Disk) of the code
compared to previous versions?

•	 What are the slowest API endpoints of my service? Not surprisingly, these are
the same kinds of questions operators might monitor for in production, and the
process to capture this information looks very similar. Instead of repeating it all
here, let’s talk about monitoring software in production, and you will quickly see
how the same techniques can be used in dev/test.

Platform
Architecture Guide

24

Run: Running containers in production
Monitor, detect, enforce, and comply

Monitoring an enterprise production environment at scale reveals the complexity of
the data challenge with operating containers in production.

•	 Mapping your data to your applications, hosts, and containers.

•	 Leveraging orchestrators.

•	 Deciding what data to store.

How to relate monitoring and security data to your applications,
hosts, containers, and orchestrators with Sysdig ServiceVision

As your environment increases in complexity, the ability to filter, segment, and
group metrics and policy violations based on metadata are essential. Tags allow you
to represent the logical blueprint of your services and application architecture in
addition to the physical reality of where containers are running. For example, you
may want to look at your data by dev/prod, by service, by pod, by container, by
cluster, by data center, or by host.

As you explore your data, you should be able to dynamically select labels and tags
on metrics to produce just the right view you need for the concern or issue at hand.
By scoping and grouping these tags, you can view the performance of a service at
large, or drill down into a deployment or even a container. The dynamic selection
gives different users and roles within your organization the ability to quickly
visualize data and answer questions about their part of the application stack.

There are two ways to think about tagging metrics:

•	 Explicit – attributes you’d like to annotate and store.

•	 Implicit – orchestrator tags like Kubernetes descriptors – namespace, pod, etc.

You should have a mechanism and a best practice for the use of explicit tags so
that anyone on your team can add them as needed – and – implicit tags should be
captured by default.

Orchestrators radically change the scheduling management approach for containers,
and impact users’ monitoring strategy along the way. Whether it’s Kubernetes,
DC/OS, Mesos, or Nomad, you’ll see a similar change to the required monitoring
approach. Individual containers become less important, while the performance
of service becomes more important. The service is made up of potentially many
containers, and more importantly, the orchestrator can move those containers as
needed to meet performance and health requirements.

Being able to dynamically and automatically understand what an orchestrator is
doing to your application is so critical, we built a capability called ServiceVision. It

Platform
Architecture Guide

25

allows Sysdig to manage all of this tagging without input from the user. This, in
turn, allows you to understand the performance of your system regardless of how
distributed or dynamic it is.

Service context make metrics relevant and actionable

Service Vision™

Kubernetes
Docker
AWS
Azure

GKE AWS
Applications

SVC 1 SVC 2 SVC 3 SVC 4

HOST

HOST

HOST

HOST

HOST

HOST

HOST

HOST

HOST

HOST

HOST

HOST

Enabling Service-oriented Intelligence

As our platform evolved, we found that we typically discover and add 12 to 25
tags to any given metric or event by default. Power users of our product may have
significantly more. Think of each unique combination of tags as a separate line-item
that you need to store, process, and then recall on-demand to extract a precise
view.

•	 Your security, monitoring, and forensics systems must implicitly tag all metrics
and events according to the metadata of your orchestrator.

•	 This tagging applies to events, user commands, and inputs, as well as system metrics,
container metrics, application component metrics, and even custom metrics.

Custom metrics bear repeating: Whether these are Prometheus, StatsD, JMX, or
Golang expvar, your developers should be able to simply output the custom metric
and the monitoring system should keep state regarding where the metric is from.

Here’s what we recommend steering clear of challenges with custom metrics and
tagging:

•	 Your agents should be able to discover the application components running on a
host, in a container, without any manual input.

•	 Given that an orchestrator can move containers at any point in time, the burden
falls to your monitoring system to auto-discover what’s running and then collect
the correct metrics.

•	 Auto-discovery might require writing a custom “check” for your custom code.
You should be able to do this once, but it should never have to be repeated or
manually told when to run.

Platform
Architecture Guide

26

For more on monitoring Kubernetes and orchestrators, check out our Kubernetes
Monitoring Guide

Alerting and Security Policy Enforcement. Operational systems should be designed
to simplify operators’ lives. One of the most direct ways of doing that is to make
sure the system can:

•	 Find issues.

•	 Alert when rules are broken or performance exceeds thresholds.

•	 Take automated actions to stop or mitigate issues where appropriate.

Sysdig has built these capabilities into the Secure DevOps Platform. All of these
have been built with ContainerVision and ServiceVision in mind. That means Sysdig
sees your hosts, containers, and applications, but can also automatically manage
actions across services and not just individual containers. This in itself provides
more value to the operator; you can manage fewer actions and be confident that
they will adapt across your dynamic, ephemeral container environment.

•	 Metric Alerts can be triggered off of any metric in the system. Metric thresholds
can be manually set across sums, averages, and rates. You can set multiple,
required conditions using boolean logic to drive alerts. Alerts can then be sent to
a range of downstream tools such as Slack, PagerDuty, Email, and more.

•	 Event Alerts use discrete system events as opposed to calculations based on
metrics. Examples include a Kubernetes CrashLoopBackOff, Docker Kill, or a
user spawning a shell inside a container. You trigger an alert after a specific
count of events.

•	 Anomaly detection is another form of alerting which, instead of using manual
thresholds, relies on Sysdig algorithms to determine normal behavior and when
these bounds have been exceeded. Sysdig can both detect anomalies against
historical metric patterns and an outlier within a group (e.g., a group of hosts).

•	 Action triggers can be tied in to any alert. Typically using a webhook, the
operator can trigger a scheduler to modify a deployment, run a script, or take
almost any other action.

•	 Policy enforcement takes a slightly different approach to actions. In the event
that any sensitive security policy is violated during run-time, the system can
pause or kill the container in question, so as to prevent further malicious
behavior or intrusion attempts. This is in addition to the build-time policy
enforcement we discussed earlier.

•	 Captures allow deep forensics and troubleshooting in the event of an incident.
The value of captures is discussed in detail in the next section. Captures can be
triggered by alerts.

Being Kubernetes native goes beyond just understanding the topology of a
workload, it also means leveraging the tools and controls that are already provided.
You don’t need yet another firewall, or another method for preventing unauthorized
container usage. Sysdig believes that using the right tools for the right job is very
important, so we embrace the tools already provided within Kubernetes. This

https://dig.sysdig.com/c/pf-kubernetes-monitoring-fundamentals?x=u_WFRi&utm_source=gated-organic&utm_medium=website
https://dig.sysdig.com/c/pf-kubernetes-monitoring-fundamentals?x=u_WFRi&utm_source=gated-organic&utm_medium=website

Platform
Architecture Guide

27

allows for very efficient roll-out of security controls, simplified troubleshooting,
and minimal performance overhead. Sysdig helps you to leverage the tools already
available within Kubernetes, such as:

•	 Admission Controllers - Prevent pods from even starting if they use container
images that breach specific policies.

•	 Pod Security Policy - Create native security controls around your workloads,
either by analyzing them or by modelling the impact against them.

•	 Kubernetes Audit API - Understand and analyze what your users are doing, what
workloads they’re deploying, and what actions they’re taking.

•	 Kube-state-metrics - Kubernetes already collects hundreds of data points about
its own health.

We decided that it wasn’t reasonable to deploy smaller, isolated backends per-
service or per-application. We instead made a design decision to build a horizontally
scalable approach to metric and data storage.

To us, prescribing multiple backends didn’t seem like a manageable approach,
neither for us to run in a cloud environment or for a customer to manage in an
on-premise deployment of our software. If you’re wondering why this would be
a consideration at all, you’ll see some open source monitoring projects default to
the isolated backend model, and thereby push concerns about scalability to the
user resulting in significantly more management work. Instead, we wanted to build
a horizontally scalable backend, with the ability for our application to then isolate
data, dashboards, alerts, and more based on a user or service.

To offer retention that wasn’t time-bound, we decided to roll up data over time. We
store full-resolution data for six hours, and then begin aggregating data after that.

Platform
Architecture Guide

28

Enterprise Grade Scale

While our backend continues to evolve, today it consists of horizontally scalable
clusters of Cassandra (metrics), ElasticSearch (events), MySQL (configuration data),
Apache Kafka (audit logs), and Redis (intra-service brokering). Building on these
components gives high reliability and scale to store years of data for long-term
trending and analysis.

Enterprise scale is one of the key factors driving Sysdig adoption. Sysdig
scales to support the largest cloud deployments in the world without
compromising performance and stability. Sysdig platform uses an
orchestrator mechanism to scale individual components and has been load
tested on thousands of production clusters. It can not only scale deep to
handle the load of individual data needs, such as capacity for metrics; but
can also scale wide for processing and scalability, such as the needs of
thousands of agents or ingestion of millions of metrics.

All of the data that we collect and store is accessible by a REST API. This scalable
backend is used for Sysdig’s cloud service, but can also be deployed by any
enterprise as software that they operate in a private cloud for greater security and
isolation. Because of our design choices in addition to avoiding the need to have to
run multiple systems for monitoring and others for security, long term analysis, data
retention, or compliance, if you’re part of a fast-growing enterprise, you can scale
and grow the system along with your business.

In addition, we want to make it simple; Sysdig comes as standard with many out-
of-the-box health dashboards, alerts, and security policies. Typically, our customers
start seeing benefit from Sysdig visibility within minutes of deploying, and spend
minimal time making tweaks to get their views and policies personalized.

Platform
Architecture Guide

29

Respond: Reducing Mean Time
to Respond (MTTR)

Troubleshooting and forensics in containerized environments

Containers are designed to be small, lightweight, and distributed. This is all fantastic
for deployability and repeatability, but impacts your ability to gain visibility in the
event of a performance issue or security event.

Remember our old friends ssh, top, ps, ifconfig, and the like? You will likely not have
them in your containers. If you’re operating in a controlled PaaS environment, you
may not have access to those tools even if they are available. And... did we mention
the container may not even exist anymore? If the orchestrator is doing its job, an
affected container is probably long gone before you get to troubleshooting it.
There’s no going back to that developer to ask for another tcpdump from the host.

In short - it’s going to be complicated to get the information you need. And, on top
of that, having the appropriate context from the orchestrator for troubleshooting
will be essential. Thus, it’s essential to enable your developers to be able to get this
in-depth information, ideally without polluting your production environment. We
had to address this issue because we decided that simplifying troubleshooting was
just as important as enabling monitoring for container workloads.

This is where Sysdig’s container troubleshooting capabilities come into play. The
ability to capture every single system call on a host gives you deep visibility into
how an application, container, host, and the network were performing at the time
of an issue or event. Sysdig capture provides the mechanism for in-depth incident
response and forensics. By capturing system call information from the host during
and even before an event, the capture provides a persistent copy of activity for the
ephemeral workloads of containers. A container may have long been destroyed,
but a copy of what it was doing, what it interacted with, what errors it generated,
and much more is stored safely within the Sysdig Secure DevOps platform for later
retrieval and analysis.

Sysdig’s ability to record all system call activity into a standalone file means that you
can capture data from production but troubleshoot on your laptop. And you can do
this long after the containers are gone, letting you perform a proper post-mortem
when your hair is no longer on fire.

Our automatic integration and communication with your orchestration master
means that we collect relevant metadata in real-time to capture the context and
the state of your distributed system – not just the state of an individual machine.

Sysdig captures can be manually created for ad-hoc troubleshooting, but more
importantly can be fully automated based on custom events triggers, such as
performance thresholds, network activity, security events and more. The creation
of these can also be integrated with SIEM platforms to allow more complex incident

Platform
Architecture Guide

30

response workflows which may traverse several systems and applications. This
helps accelerate root cause analysis of application troubleshooting, as well as
forensic analysis of security incidents

Use the Same Data to Monitor and Secure

What was the
problem?

Where did it
occur?

Why did it
happen?

Macro

Micro

Incident: Privileged container
is launched in Kubernetes that
violated PCI article 10.2.5

Example:
Investigate compliance violation

Example:
Troubleshoot performance issue

Application context: Violation
occurred in a PCI namespace

Dig down with low-level syscall data
(commands, file activity, network connections,
correlated with Kubernetes activity)

Incident: CPU spike
noticed in several nodes
in K8s infrastructure

Application context: Spike
occurred in a container
within java-app namespace

For example, imagine you get an alert because you are seeing that databases in a
particular service are spawning outbound connections. That alert within Sysdig can
trigger a capture, recording all system calls for a needed time on that host. These
captures will contain data from before the violation in addition to after. Exploring
that in Sysdig Inspect, you can get the correct container context and then drill
down into its network connections.

To get a sense of what you can do with Sysdig Inspect, read our Introduction to
Sysdig Inspect.

Ensuring Infrastructure compliance

Enterprises need to ensure configurations across their infrastructure are compliant
with standards such as CIS benchmarks – from hosts and nodes to the service
configuration files inside containers.

Another value-added feature of the Sysdig platform is the ability to run and report
on container and Kubernetes compliance benchmarks, like docker-bench and
kube-bench, to validate configuration at every logical layer of your infrastructure.
In the event of a Kubernetes and Docker CIS benchmark configuration drift
(meaning things are out of compliance with best practices), Sysdig provides guided
remediation tips to recommend the changes needed to maintaining container
compliance, saving security professionals, and DevSecOps time when issues arise.

https://sysdig.com/blog/sysdig-inspect/
https://sysdig.com/blog/sysdig-inspect/

Platform
Architecture Guide

31

Auditing activity

In addition to troubleshooting activity, having an audit trail of who did what in your
container environment is essential to meet auditors’ requirements in the event
that you have a breach or other infraction. Again, containers’ dynamic, ephemeral
behavior makes this task much harder than previous generations of infrastructure.

Sysdig has the unique ability to see deeply into all the container level activity,
combine syscall audit trail with the Kubernetes audit logs and provide a timeline
view of all activity in your container environment.

This auditing data can be supplied to external parties, fed into another events
storage system, notification tools (e.g., Slack, Webhook, Mail, etc.), or a Security
information and event management SIEM (e.g., Splunk, Syslog, Qradar, MCM, etc.).

With just a few clicks, it’s possible to isolate data for a bad actor. In case of a breach
where the bad actor was isolated, Sysdig provides a powerful way to understand
the scope of the actor’s activity and instantly understand what microservices or
data may have been affected.

Platform
Architecture Guide

32

Conclusion

Building a highly scalable, distributed data platform for visibility and security into
your containers is not an easy task. A focus on getting the right data with the right
context is essential to a robust system that can serve developers, operators, and
security professionals across the entire container lifecycle.

Important questions to ask as you investigate tools to help you deliver
secure DevOps for your business:

•	 How will you ensure that only the most reliable, secure code is going into
production?

•	 How are you going to instrument containers in production for monitoring and
security?

•	 How will you interface with orchestrators for the right context to your data?

•	 How will you implement security and compliance policies on your containers?

•	 How will you simplify the collection of application data and custom metrics?

•	 What data will you decide to retain?

•	 And will you enable troubleshooting and forensics in dynamic, ephemeral
container environments?

Maximize performance
& availability

Get results quickly

Embed security and
validate compliance

Ship cloud apps faster by converging monitoring and security

Anchore Engine

Please check out the resources section of Sysdig.com to
find more in-depth guides to assist you in your transition
to containers. Your account team can support with proof
of concept to meet your specific needs, or start running

Kubernetes in production with confidence with your free trial of
Sysdig Secure DevOps platform sysdig.com/company/free-trial

sysdig.com/company/free-trial

Copyright © 2021 Sysdig, Inc. All rights reserved. Guide-007 Rev. C 1/21.

https://sysdig.com/company/free-trial/
https://sysdig.com/company/free-trial/

	_l7gq8dh9tfnz
	_tnf12ylw3e9k
	_w1fo2gudtay1
	_z4u86fphx661
	_dl7f6qsdw4u
	_te536hqbnvxe
	_nqebwrajkk8y
	_lg2qwdedljrg
	_2aauav3fwj5p
	_8dp5anwu09yn
	_g0avz4c2t7bt
	_rbwpk56tor8n
	The Sysdig Secure DevOps Platform
	Key elements of the Sysdig Platform
	The Sysdig architecture: Built on open source foundation
	Instrumentation needs to be transparent
	ServiceVision adds rich context to ContainerVision

	Build: Accelerating secure development
	Run: Running containers in production
	Respond: Reducing Mean Time to Respond (MTTR)
	Conclusion

