
6 Considerations
for Kubernetes
Capacity Planning

Capacity management has always been an issue for
companies, but it becomes especially challenging when
operating workloads in a cloud-native environment.
Cloud-native deployments have to take into account,
and declare, specific resources required to operate
effectively. Yet, achieving the right balance of availability
and reliability requires DevOps, Security, and other
IT teams to identify their needs as they establish the
relationship between the application architecture and
the underlying cloud infrastructure.

There are a variety of factors to consider, and different
teams sometimes function with competing needs, so it can
be challenging to create a comprehensive and universally-
adopted capacity management strategy. Performance
and cost will always be factors, and so will the myriad of
conditions that regularly change as workload needs shift.

Modern organizations that have adopted a Kubernetes-
based approach to application development and workload
management will want to prioritize capacity planning.
This guide offers a framework that will help enterprises
make their environments more efficient and be prepared
to support the needs of their Kubernetes clusters through
effective use and planning of resources.

Planning for the reality
of Kubernetes limitations

Kubernetes delivers so many advantages, but the reality
about its inherent resource constraints is that having too
little resources can result in CPU activity being throttled
and pods receiving an out-of-memory (OOM) error.
Conversely, if pods are requesting too much, then the
Kubernetes engine won’t have enough space to allocate
new workloads and resources will be wasted. The right
balance is determined by what a team’s most pressing
needs are, and those may change over time.

It’s important to put context to the process of planning
and operating accordingly because capacity planning
involves both art and science to implement and make it
work. It starts with forecasting the resources required
to meet the demands of the infrastructure over a period
of time with a reasonable expectation of change to your
IT and application development needs. Under- or over-
estimating needs could create an environment that is

 → Demand changes based on needs and usage: You
will experience periods of low usage, and then
there will be critical times when you push the
pedal to the metal and need as much capacity as
possible. Some of this you can predict, but variance
will always be a factor.

 → Even the best laid plans can go awry: Projects
don’t go according to schedule and this will impact
your capacity needs when you least expect it. So,
even if you’re careful about anticipating when you
need to scale up or down, it’s possible that you’ll
encounter some unforeseen factor that could derail
those plans. If your capacity capabilities don’t jive
with reality, you’ll struggle to either make up the
difference or consume the available capacity.

mismatched for what you’re trying to accomplish. When
you underestimate, you’ll likely face intermittent poor
performance by Kubernetes, or will experience delays.
Overestimating will be costly, as you’ll be paying for
capacity you never use.

Here are some basic tenets regarding Kubernetes capacity
that should be considered as you structure your plans:

 → More isn’t always better...either is less: Every
development iteration and change usually incurs
some level of additional resources. In terms
of delivery, that’s great news because your
applications will have more functionality and
capabilities. But if you haven’t made adequate
preparations for the additional load, your delivery
schedule will fall behind. Should you always plan
for more? Should you err on the side of caution and
plan for less? Neither is necessarily a good rule of
thumb. Rather, take a good, hard look at your needs
historically and consider them in future planning.
They may not be perfect barometers, but they are
likely to provide good guidance about your capacity
needs.

1

Use service-level indicators
and objectives

6 CONSIDERATIONS FOR KUBERNETES CAPACITY PLANNING

Consider that capacity planning has traditionally been
attached to foundational aspects of an infrastructure,
like CPUs, memory, servers, and other traditional types
of resources. While it may make sense to start with these
factors, what will really help guide your planning is a
focus on service-level indicators (SLIs) and service-level
objectives (SLOs) and the interplay and dependencies
among applications, APIs, and those traditional
resources previously mentioned. This provides a more
comprehensive and realistic picture of where your needs
will exist. That will allow you to more accurately predict
for the corresponding capacity needs.

This type of focus offers an intent-based approach that
allows for more flexibility with regard to your changing
needs. Operating your services and workloads according
to intent rather than a static number of resources allows
you to more accurately adapt as needs and requirements
change. In essence, it allows you to be agile and predictive.
Ultimately, a willingness to be brutally realistic in your
operational approach will prepare you for inevitable
change and the corresponding capacity needs.

SLA

SLOs

SLIs

Service Level Agreement
The agreement you make with your clients
or users

Service Level Objetives
The objetives your team must hit to meet
that agreement

Service Level Indicators
The real numbers on your
performance

2

Apply resources effectively
through autoscaling

6 CONSIDERATIONS FOR KUBERNETES CAPACITY PLANNING

Pods are the way to measure activity and deployment
level in Kubernetes, and Kubernetes environments are
very attuned to how pods are scheduled - done correctly,
they meet the correct needs. If not, then there will be lags
and other performance issues.

Kubernetes provides sophisticated control of scheduling
of pods to nodes. The end result is that the Kubenetes
scheduler will pack all the pods into the cluster nodes based
on the necessary requirements and constraints, and this is
efficient for most standard needs.

However, in some cases you will want more capacity. This
becomes an issue not of number of pods or CPU load, but
of request latency. At issue are things like reconciling high-
level intent when you’re facing undeterminable latency.

Thankfully, Kubernetes autoscaling supports custom
metrics and you can typically scale a horizontal pod
autoscaler on arbitrary custom metrics like latency or
requests per second – you need to make use of this and
will be grateful that it’s available. You can even use factors

not related to Kubernetes objects. For example, if you use
an external queue system outside Kubernetes, you can
hook up high-level metrics like the number of requests in
the queue or an even better time in the queue (average
latency) to high-level capacity planning. If you have items
in your queue that are older than X seconds, you can
simply add another pod.

There’s also the ability to listen to cluster events and
monitor collections of pods and make very high-level
capacity decisions automatically. This happens when
a service starts to slow down and requires the need
to schedule a few more instances because one of its
dependencies is overloaded or the data store being used
for storage is out of space.

One way to ensure you don’t overuse your capacity is
simply to conserve it. While that might help you achieve
the goal of coming in under your target, you might be
reserving far too many resources and therefore limiting
your ability to perform needed development and workload
management.

Consider that if you find yourself in this situation, you’re
going to be charged for those resources even if they
aren’t being used, and it will also make deployments more
difficult to schedule. That’s why Kubernetes capacity
planning is always a balance between the stability and
reliability of the cluster, and the correct use of the
resources.

There are situations where a container requests more
resources than it needs. If it’s just one container, it may
not have a critical impact on the invoice from your cloud

provider. But if this happens in all the containers, you’ll
have several extra costs in your invoices in a large cluster.
Not to mention that if pods are too big, you may spend
extra effort debugging scheduling issues. After all, it’s
harder for Kubernetes to schedule bigger Pods following
your priorities.

In Kubernetes capacity planning, to reserve the correct
amount of computational resources, you need to analyze
the current resource usage of your containers. For that,
you could use queries to calculate the average CPU
utilization for all the containers belonging to the same
workload. After performing some Kubernetes capacity
planning operations, you’ll need to check the impact of
the changes on your infrastructure. For that, you can
compare the underutilized CPU cores now against the
values from one week before to assess the impact of your
optimizations.

Rightsize cluster requests
6 CONSIDERATIONS FOR KUBERNETES CAPACITY PLANNING

3

Monitor Check space
available

Check unused
requested resources

1 2 3

Pod rightsizing Cluster rightsizing Back to 1

4 5 6

Rightsizing the cluster

Address memory and CPU issues
6 CONSIDERATIONS FOR KUBERNETES CAPACITY PLANNING

With many types of systems, once memory capacity gets
low, an out-of-memory (OOM) safeguard kicks in and kills
certain processes based on system-based rules.

The Kubernetes OOM approach initiates an eviction
policy when a node is low on memory and typically stops
pods by identifying them as “failed.” These pods are then
scheduled in a different node which frees memory to
relieve the memory pressure. This is all fine and well
as long as you’ve identified which nodes should be
applied. Kubernetes will not allocate pods that request
more memory than is available in a node. But limits can
be higher than requests, so the sum of all limits can be
higher than node capacity. This is called overcommit,
and in practice, if all containers use more memory than
requested, it can exhaust the memory in the node. This
usually causes the death of some pods in order to free
some memory, and it can happen at the worst time
possible.

There are many differences on how CPU/memory
requests and limits are treated in Kubernetes. A container
using more memory than the limit will most likely die, but
using CPU doesn’t cause Kubernetes to kill a container.
CPU management is delegated to the system scheduler,
and it uses various mechanisms for the requests and the
limits enforcement.

CPU requests are managed using a “shares” system.
This means that the resources in the CPU are prioritized
depending on the value of shares. Each CPU core
is divided into 1,024 shares and the resources with
more shares have more CPU time reserved. If a CPU
is starved, however, shares won’t ensure your app has
enough resources, as it can be affected by bottlenecks
and general collapse.

4

Note that a pod without requests and limits is the first of
the list to OOM kill. With the CPU, this is not the case.
A quality of service (QoS) class is assigned to pods by
Kubernetes itself, and a pod without CPU limits is free to
use all the CPU resources in the node. The CPU is there
to be used, but if you can’t control which process is using
your resources, you can end up with a lot of problems due
to CPU starvation of key processes.

72%

5.70

CPU Requests
vs Allocatable

Memory Req.
vs Allocatable

0

37%

13.4GiB0

72%

5.70

CPU Requests
vs Allocatable

Memory Req.
vs Allocatable

0

37%

13.4GiB0

5

Adapt to limits and requests
6 CONSIDERATIONS FOR KUBERNETES CAPACITY PLANNING

One of the challenges of every distributed system designed
to share resources between applications (like Kubernetes),
is how to properly share the resources. This may seem
like a paradox, but applications have historically been
designed to run in standalone fashion on bare metal and
use all available resources. This creates a new landscape
that requires sharing the same space with others, and that
makes resource quotas a definitive requirement.

Kubernetes allows administrators to set quotas in
namespaces as hard limits for resource usage. The
resulting effect is that if you set a CPU request quota in
a namespace, then all pods need to set a CPU request in
their definition, otherwise they will not be scheduled.

When you have some experience with Kubernetes, you’ve
probably experienced that properly setting requests and
limits is of utmost importance for the performance of the
applications and cluster.

In an ideal world, your pods should be continuously using
exactly the amount of resources you requested, but we
know all too well that this isn’t likely to happen. Consider
a 25% margin up and down the request value as a good
barometer. If your usage is much lower than your request,
you are wasting money. If it is higher, you are risking
performance issues in the node. This is the essence of all
the capacity planning we’ve discussed in this document,
but the point is a critical one - expectations don’t always
match reality, but you can be prepared with a comfortable
divergence in either direction.

Regarding limits, achieving a good setting is a matter of try,
learn, and try again. There is no optimal value for everyone
as it will depend on the nature of the application, the
demand model, the tolerance to errors and many other
factors.

Limits

Ideal value
fair margin

CPU

Too high
Starve other
applications
if usage rises

Memory

Too Low
Out of memory Kill

Too Low
CPU Throttling

6 CONSIDERATIONS FOR KUBERNETES CAPACITY PLANNING

6

Use intuitive dashboards
to optimize observability

Kubernetes monitoring dashboards enable us to have
visibility and insights into activity we couldn’t address
manually. With the right dashboards, end-users are able
to identify issues so they can troubleshoot quickly and
optimize clusters without the need of experts.

While these dashboards are critical for troubleshooting,
they are also an essential resource for doing capacity
planning which helps prevent under- and/or over-
provisioning. They can identify where you may have extra
costs based on misalignment of platform resources, and
can also identify where within your environment you can
support new workloads.

An effective dashboard isn’t simply a batch of metrics.
The data it identifies and renders must be organized in a
use-case-oriented fashion, which gives the user a well-
structured, informed guide through your Kubernetes
cluster. It’s critical, therefore, that the user be able to
identify not just the general operational details of their
environment, but they must also be able to view the
behaviors of the individual resources running in it.

Sysdig’s dashboards allow Kubernetes and DevOps admins
to identify the operational elements of their Kubernetes
clusters with these factors:

 → General overview of cluster behavior

 → Applications that have been deployed into your
Kubernetes clusters, where they’re integrating with
other data sources, and issues that arise within
those integrations.

 → Ability to troubleshoot applications directly from the
dashboard

 → Create, manage, modify, and remove resources

 → Resource metrics for each Kubernetes object

Comparing the behavior of different containers in different
clusters only takes a mouse click. The same can be done to
easily compare metrics across cloud providers or regions
or narrow down your scope to a particular workload.

This way, Kubernetes dashboards let you check that
one app is operating effectively through all of your
infrastructure, which enables admins to accurately
identify performance status, which then also leads to a
better ability to manage costs. Also, the dashboards let
you troubleshoot potential issues by drilling down from
the clusters to a particular container.

Copyright © 2021 Sysdig, Inc. All rights reserved. CL-016 Rev. A 10/21

Critical situations aren’t the only circumstances when
a DevOps engineer needs to check out Kubernetes
dashboards. Using the dashboards to optimize cluster
configuration is something every SRE should do once in
a while.

Dashboards provide all types of data, but it is only
actionable intelligence derived from that data that
helps organizations get the greatest benefit from their
Kubernetes environment. The right dashboard helps you

configure the optimal resource requests and limits for CPU
and memory by showing the suggested best practices and
meaningful tips, allowing you to set the better values for
the studied containers.

Proper resource planning and capacity optimization will allow
you to operate Kubernetes with predictability and will improve
system resilience. To do this, you will need deep visualize
and correlation of all the metrics in your Kubernetes environment.
This is where Sysdig can help! Our free trial can help you start
improving your Kubernetes capacity planning today.

Start Your Free Trial

https://sysdig.com/company/free-trial-monitor/

