
Kubernetes 
Monitoring Checklist

Kubernetes has taken the container ecosystem by storm. It acts as the 
brain for your distributed container deployment and is designed to manage 
service-oriented applications using containers distributed across clusters of 
hosts. Kubernetes provides mechanisms for application deployment, service 
discovery, scheduling, updating, maintenance, and scaling.

You are adopting a DevOps approach, using Kubernetes and containers to 
accelerate innovation. While this dramatically simplifies deploying applica-
tions in containers — and across clouds — it also adds a new set of complex-
ities for managing, securing and troubleshooting applications. Kubernetes 
and container monitoring is critical to managing application performance, 
service uptime and troubleshooting. 



Static vs. dynamic:

While legacy tools may have worked for monitor-
ing applications with static attributes, they cannot 
handle monitoring the dynamic nature of contain-
er-based applications. In our latest container usage 
report, we found that 22% of the containers live 
for 10 seconds or less while 54% of them live less 
than five minutes. This creates a high level of churn. 
Labels like the container id or the pod name change 
all the time, so we stop seeing old labels while we 
need to deal with new ones. Once a container dies, 
everything inside is gone. You cannot SSH or look 
at logs, and most of the tools you are accustomed 
to using for troubleshooting are not installed. 
Containers are great for operations as we can  
package and isolate applications to consistently 
deploy them everywhere, but at the same time, 
this makes them black boxes, which are hard to 
troubleshoot.

Increased Infrastructure complexity:

Dynamic provisioning via Infrastructure as a 
Service, automated configuration management 
tools, and orchestration platforms like Kubernetes 
enable efficiency but also add to monitoring and 

What makes Kubernetes 
monitoring so challenging? 

KUBERNETES MONITORING CHECKLIST

troubleshooting complexity. Therefore, there is a need for 
a new approach to gain the visibility you need to deploy 
and manage cloud services.

Microservices architecture:

In addition to increased infrastructure complexity, appli-
cations are being designed using microservices, where 
the number of components has increased by an order of 
magnitude. Each service can be distributed across multiple 
instances, and containers move across your infrastructure 
as needed. Monitoring the Kubernetes orchestration state 
is key to understanding if Kubernetes is keeping all of the 
service instances up and running.

Component explosion and scale requirements

When we adopt containerized architectures, the number 
of components and monitoring metrics grows exponen-
tially. Traditional monitoring systems just can’t keep up 
with this explosion. With legacy application architectures, 
we knew how many instances we had of each service 
component and where they were located. This is no longer 
the case in a containerized architecture. Kubernetes adds 
multidimensional levels like cluster, node, namespace, or 
service, as well as cardinality. The different aggregations, 
or perspectives, that need to be monitored can be   
staggering in volume!

So, how does this affect Kubernetes monitoring  
methodology and tooling?  

We have put together this checklist to address this  
question and to help you develop an approach for  
successfully monitoring Kubernetes workloads.

https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://sysdig.com/blog/sysdig-2019-container-usage-report/


Golden Signals are a standard for Kubernetes application monitoring. These signals help troubleshoot 
microservices applications with a reduced set of metrics that offer a wide view of a service from a user 
or consumer perspective.

1

Monitoring Kubernetes With 
Golden Signals

Benefits:

 • Knowing the Golden Signals for Kubernetes monitoring 
enables you to save time by looking at what really 
matters and avoiding traps that could mask the real 
problem.

 • Metrics can be aggregated at different levels for 
Kubernetes entities. Slicing data at the cluster, node, 
deployment, and pod level helps you locate issues 
efficiently. Troubleshooting is much faster with the 
ability to dig in and expose performance problems at 
various levels of the Kubernetes entities.

KUBERNETES MONITORING CHECKLIST

Golden Signals
of Monitoring

Traffic
A measure of how much demand

is being placed on your system,
measured in a high-level

system-specific metric.

The rate of requests that fail,
either explicitly (e.g., HTTP 500),

implicitly, or by policy.

Errors

The time it takes to service a
request. It's important to
distinguish between the latency of
successful requests and the
latency of failed requests.

How "full" your service is. A
measure of your system fraction,
emphasizing the resources that
are most constrained.

Latency

Saturation

Tr
affi

c
Errors Satu

ra
tio

n
Latency



2

The Kubernetes control plane is the brain of your 
Kubernetes cluster. It manages all of your cluster 
resources, can schedule new pods, and can read all of 
the secrets stored in the cluster. The main components 
of the Kubernetes control plane are:

Monitoring Kubernetes 
Control Plane

KUBERNETES MONITORING CHECKLIST

C
lu

ster

kubelet

container runtime

kube-proxy

Node

kubelet

container runtime

kube-proxy

Node

kube-apiserver

kube-dnsscheduler
controller
manager

etcd

Kubernetes Master

$kubectl

 • API Server

 • Kubelet

 • Controller manager

 • etcd

 • Kube-proxy

 • Kube-dns

Benefits of monitoring Kubernetes control plane:

The control plane controls your cluster; monitoring it, 
especially the kube-apiserver, will let you detect a latency, 
errors, and validate the service performance. Monitoring 
the Kubernetes API server provides visibility into all of the 
communication between the cluster components.

Monitoring API server use cases:

 • You detect latency increase in the requests to the 
API. This is typically a sign of overload in the 
API server. Your cluster is most likely loaded 
and the API server may need to be scaled out.

 • You detect an increase in the depth and latency 
of the work queue. You are having issues 
scheduling actions. You should check that the 
scheduler is working. Perhaps one node is 
having issues and you may want to replace it.



Kube-controller-manager is responsible for 
having the correct number of elements in all 
of the deployments, daemonsets, persistent 
volume claims, and many other Kubernetes 
elements. An issue in the kube-controller 
manager can compromise scalability and 
resilience of the applications running in 
the cluster. Monitoring the kube-control-
ler manager can prevent complications that 
would be hard to detect otherwise. 

Monitoring Kubelet is essential as all of the 
communication with the container runtime 
is done through Kubelet. It’s the connec-
tion between Kubernetes and the OS. Some 
issues in your Kubernetes cluster that appear 
to be random can be explained by API server 
or Kubelet problems. 

KUBERNETES MONITORING CHECKLIST

Monitoring Kubelet use cases:

 • Pods are not starting. This is typically a sign of Kubelet 
having problems connecting to the container runtime 
running below. Check the pod start rate and duration 
metrics to see if there is latency creating the containers 
or if they are, in fact, starting.

 • A node doesn’t seem to be scheduling new pods. 
Check the Kubelet job number. There’s a chance that 
Kubelet has died in a node and is unable to schedule 
pods.

 • Kubernetes seems to be slow performing operations.
Check all of the golden signals in Kubelet metrics. It 
may have issues with storage, latency, communicating 
with the container runtime engine, or load issues.



KUBERNETES MONITORING CHECKLIST

 • Host is down. If a host is down or unreachable, you might 
want to receive a notification with a suitable wait time to 
avoid noisy alerts.

 • Do I have enough Kubernetes nodes in the cluster? 
A node failure isn’t a problem in Kubernetes since the 
scheduler will spawn the containers from the pods in the 
failed node into other available nodes. But what if you 
are running out of nodes, or the resource requirements 
for the deployed applications overbook existing nodes? 
And what if you are hitting a quota limit?

While Kubernetes applications are not 
associated with a single node, availability of 
nodes translates to available cluster capac-
ity. It’s important for nodes to perform well 
enough to not create a performance issue, 
and that we have enough nodes to run our 
workloads. If a node fails, the workloads 
running there are automatically migrated 
to a different node. As long as there are 
spare resources to run everything, and if the 
system is well designed, there will likely be 
minimal interruption.

Monitoring Kubernetes Cluster and nodes use cases:



Applications in Kubernetes are structured 
into several hierarchical layers that define 
how the services are organized outside of the 
Kubernetes world.

Monitoring Kubernetes 
Workloads

KUBERNETES MONITORING CHECKLIST

Service

Physical

Logical

Node

Master

Workers

Namespace / Workloads

ReplicaSet

Pod

Deployment DaemonSet StatefulSet Job

Importance of Hierarchy in Monitoring 
Kubernetes 

In a Kubernetes environment, a pod is the 
fundamental unit. Pods and other Kubernetes 
elements are strongly coupled and it’s important 
to keep that correlation when  interpreting the 
data. A pod can die and respawn, therefore the 
state of an individual pod is not as important as 
aggregate information of all the pods in a deploy-
ment. Essential parameters like availability of the 
service, possible points of failure, and availabil-
ity of resources are important for monitoring 
Kubernetes health.

Monitoring Kubernetes application use cases:

 • Do I have enough pods/containers running for each 
application?  There are multiple reasons why the 
number of running containers can change. That includes 
rescheduling containers in a different host because a 
node failed, or because there aren’t enough resources 
and the pod was evicted from a rolling deployment of a 
new version, and more.

 • Do I have any pod/containers for a given application? 
Get an alert if there aren’t any containers running for a 
given application.

 • Is there any pod/container in a restart loop? When 
deploying a new version that’s broken, if there aren’t 
enough resources available or some requirements/
dependencies aren’t in place, you might end up with 
a container or pod continuously restarting in a loop. 
That’s called CrashLoopBackOff. When this happens, 
pods never get into ready status and, therefore, are 
counted as unavailable and not as running.

3

https://sysdig.com/blog/debug-kubernetes-crashloopbackoff/


KUBERNETES MONITORING CHECKLIST

Understanding Kubernetes limits and requests

Applications were typically designed to run stand-
alone in a machine and use all of the resources at 
hand. The new Kubernetes landscape requires sharing 
the same space and resources with others, and that 
makes setting limits and quotas a hard requirement.

Namespace quotas

Kubernetes allows administrators to set quotas, in 
namespaces, as hard limits for resource usage. This has 
an additional effect; if you set a CPU request quota in 
a namespace, then all pods need to set a CPU request 
in their definition, otherwise they will not be sched-
uled. The user is responsible for enforcement of these 
limits since there is no automatic mechanism to tell 
Kubernetes how much overcommit to allow.

Therefore it is important to:

 • Set requests and limits in your workloads.

 • Setting a namespace quota will enforce all of the 
workloads in the namespace to have a request 
and limit in every container.

Kubernetes OOM problems

When a node is low on memory, Kubernetes evic-
tion policy steps in and fails/stops pods. If they are 
managed by a ReplicaSet, these pods are scheduled 
in a different node. It’s important to monitor closely 
to resolve issues like:

 • OOM kill due to container limit reached

 •  Kubernetes OOM kill due to limit 
overcommit

 • CPU throttling due to CPU limit

In summary, these are some important considerations 
for monitoring Kubernetes workloads:

1. Monitor resource usage in your workloads - this 
will allow you to discover different issues that 
can affect the health of the applications running 
in the cluster.

2. Understanding that your resource usage can 
compromise your application and affect other 
applications in the cluster is the crucial first step. 
You have to properly configure your quotas.

3. Monitoring the resources and how they 
are related to the limits and requests will 
help you set reasonable values and avoid 
Kubernetes OOM kills. This will result in a 
better performance of all the applications in the 
cluster, as well as a fair sharing of resources.

4. Your Kubernetes alerting strategy can’t just 
focus on the infrastructure layer. It needs to 
understand the entire stack, from the hosts and 
Kubernetes nodes at the bottom, up to the top 
where the application workloads run.

5. Being able to leverage Kubernetes and cloud 
providers metadata to aggregate and segment 
metrics and alerts will be a requirement for 
effective alerting across all layers.

https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/quota-memory-cpu-namespace/
https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/quota-memory-cpu-namespace/


Monitoring Kubernetes 
with Prometheus

KUBERNETES MONITORING CHECKLIST

Prometheus is the de facto approach for monitoring Kubernetes. While it’s really easy 
to start monitoring Kubernetes with Prometheus, DevOps teams quickly realize that 
Prometheus has roadblocks like scale, RBAC, and teams support for compliance.

Sysdig Monitor and Sysdig backend are able to store and query Prometheus native metrics and labels. 
Additionally, users can use Sysdig in the same way that they use Prometheus. You can leverage Prometheus 
Query Language queries for dashboards and alerts, or the Prometheus API for scripted queries, as part of a 
DevOps workflow. This way, your investments in the Prometheus ecosystem can be preserved and extended 
while improving scale and security. Users can take advantage of the troubleshooting, correlation and support 
that we provide, as part of Sysdig Monitor, to go beyond a basic Prometheus monitoring solution.

For specific guidance on how to start monitoring your Kubernetes cluster, and gain deep visibility and trouble-
shooting efficiency, download our  Kubernetes Monitoring guide. Additionally, start your free trial of Sysdig 
Monitor to start delivering on your cloud service availability and performance goals.

Copyright © 2020 Sysdig, Inc. All rights reserved. CL-005 Rev. A 7/20

4

https://sysdig.com/resources/whitepapers/kubernetes-monitoring-fundamentals/
https://sysdig.com/company/free-trial/

