
CHECKLIST

Kubernetes 
Security 
Checklist 



5 Steps to Securing Kubernetes
Kubernetes has swiftly emerged as the de facto operating system of the cloud, revolutionizing 
how developers package applications into portable microservices. Yet, the complexity of 
operating Kubernetes often leads DevOps teams to postpone crucial security measures until the 
brink of production deployment. This delay poses significant risks, as Kubernetes demands a 
novel approach to security — one that traditional tools and processes, with their limited visibility 
into dynamic container environments, fail to satisfy.

As the cloud landscape increases in complexity, where 70% of containers in 2024 have a 
lifespan of five minutes or less, the ability to swiftly detect and investigate anomalous behaviors 
becomes a formidable challenge. Addressing container security risks at the earliest stage is 
paramount; procrastination not only hampers cloud adoption momentum but also escalates 
security and compliance vulnerabilities.

The creation, management, and updates of concise checklists for critical cloud applications as 
they transition to production falls heavily on the DevOps teams. This adds a substantial burden 
to their existing duties of maintaining cloud infrastructure and application integrity.

In cloud security, time is the most valuable currency. An attack could tarnish reputations in 
as little as 10 minutes, underlining the urgency of adopting new strategies, technologies, and 
mindsets to safeguard business innovation at the cloud’s pace. It’s imperative now, more than 
ever, to reimagine security that aligns with the speed of the cloud.

With this critical perspective in mind, we have curated a comprehensive checklist to guide your 
security strategy as you escalate your utilization of containers and Kubernetes. This resource 
aims to equip you with the insights necessary for a proactive and informed approach to cloud-
native security, ensuring your readiness to tackle challenges at cloud speed.

1 https://www.zdnet.com/article/technology-containers-short-lifespans-are-getting-even-sh
02

K
U
B
E
R
N
E
T
E
S
 
S
E
C
U
R
I
T
Y
 
C
H
E
C
K
L
I
S
T 

https://sysdig.com/blog/ephemeral-containers-and-apts/
https://www.zdnet.com/article/technology-containers-short-lifespans-are-getting-even-sh


01
Breaking Down  
Kubernetes Security Risk

STEP

Container Runtime

Node

Pod

Master Node

Control Plane
Components

Cluster

Container

APP APP

Access via Kubernetes 
API Proxy etcd APIA

A

Exploit vulnerability in 
apps or 3rd party librariesB

B

Access via APIC

Access to the server 
or virtual machinesD

D

Kube-apiserver

kubeletC

The ability to declaratively provision and 
configure Kubernetes infrastructure settings, 
as well as application constraints using an 
“Infrastructure as Code” (IaC) approach, lets 
organizations set a security baseline across 
all key aspects of their Kubernetes clusters, 
regardless of the specific Kubernetes platform 
and underlying compute infrastructure 
environment. Declarative configuration also 
eliminates operator errors that can result in 
exploitable misconfigurations.

Let’s now take a glance at a Kubernetes 
cluster to understand which elements you 
need to protect.

First, you need to protect your applications 
and libraries. Vulnerabilities in your base 
OS images for your applications can be 
exploited to steal data, crash your servers, 
or scale privileges. Another component you 
need to secure are third-party libraries. 

Often, attackers won’t bother to search for 
vulnerabilities in your code because it’s easier 
to use known exploits in your applications 
libraries.

The next area is the Kubernetes control 
plane, your cluster brain. Programs like the 
controller manager, etcd, or kubelet can be 
accessed via the Kubernetes API. An attacker 
with access to the API could completely stop 
your server, deploy malicious containers, or 
delete your entire cluster. Additionally, your 
cluster runs on servers, so access to them 
needs to be protected. Undesired access to 
these servers, or the virtual machines where 
the nodes run, will enable an attacker to have 
access to all of your resources and the ability 
to create serious security exposures.

Now that we know what to secure, let’s get 
into the details and review the framework for 
approaching Kubernetes security.

03

K
U
B
E
R
N
E
T
E
S
 
S
E
C
U
R
I
T
Y
 
C
H
E
C
K
L
I
S
T 



02
Securing 
Infrastructure as Code 

STEP

IaC Security and Auto-Remediation Scan IaC templates

Apply policy as code via OPA

Enforce compliance and governance

Auto-remediate drift

risk-based prioritization

What it is

Infrastructure as Code (IaC) is a way to 
manage both Kubernetes infrastructure and 
applications within a version control system 
(e.g., Git). Any changes to infrastructure are 
achieved through pull requests that change 
the source files.

Once approved and merged, pull requests 
will reconfigure and synchronize production 
infrastructure to match the state defined in 
the source repository.

This trend is an opportunity for security to 
shift further left, as part of a secure DevOps 
workflow to manage risk in Kubernetes.

Benefits

IaC is rapidly gaining ground because it 
offers a path towards higher resiliency 
through better operational control. With IaC 
security, teams can identify and eliminate 
configuration risks before infrastructure is 
deployed in production.

Git commits provide verifiable updates and 
allow you to also apply auto-remediation 
using a GitOps workflow. Teams can improve 
their Kubernetes security posture and close 
the gap between source and production.

Approach

DevOps teams can automate compliance 
and governance using policy as code based 
on Open Policy Agent (OPA). They can 
apply policies to scan IaC templates pre-
deployment and also detect runtime drift, 
which can be remediated at the source with 
a simple pull-request. Fixes can be prioritized 
based on application context.

04

K
U
B
E
R
N
E
T
E
S
 
S
E
C
U
R
I
T
Y
 
C
H
E
C
K
L
I
S
T 



Deployment 
creation 
request

kubernetes

api

Openshift

Host

kubernetes

Validation
Request

Image
Definition

Policy
Definition

Validation
Decision

Scan
Results

Policy
Results

Admission
Controller

Scanning 
Pod

Vulnerability feed
Policy management
Scan results
Reporting
Alerting

Secure Platform

03
Preventing Threats 
with Admission 
Controllers 
What is it

Kubernetes admission controllers are pieces 
of code that intercept Kubernetes API calls 
before the objects are created. They can be 
seen as a gatekeeper that intercepts API 
requests and enforces what can run on the 
cluster.

CI/CD image scanning is a critical 
requirement when implementing container 
and Kubernetes security. But developers 
might sometimes bypass the CI/CD pipeline 
and deploy an image directly to the cluster. 
You can integrate an admission controller 
with a scanning engine to prevent risky 
images from being deployed if they 
don’t meet your security and compliance 
requirements.

STEP

Benefits

When image scanning is used with the 
admission controller, you can block threats 
before they reach production. Immediately 
trigger a scan for every image that is trying 
to be deployed in the cluster. You can also use 
additional environment context when defining 
admission criteria, such as namespace, pod 
metadata, etc. By triggering image scanning 
via the admission controller, you can:

 Check your application, its libraries, and 
other files for well-known vulnerabilities.

 Analyze the metadata to detect 
misconfigurations like exposed insecure 
ports, running as privileged (root) users, 
or exposed credentials.

 Define custom checks, like package 
blacklisting or detecting wrong file 
permissions.

05

K
U
B
E
R
N
E
T
E
S
 
S
E
C
U
R
I
T
Y
 
C
H
E
C
K
L
I
S
T 

https://sysdig.com/products/secure/image-scanning/
https://sysdig.com/blog/image-scanning-best-practices/


If these security policies are not met, you can 
block the image from reaching production 
and notify your developers to fix the issues.

Approach

Enable the Kubernetes admission controller 
and integrate with a scanning engine to 
prevent risky or unscanned images from 
being deployed.

What it is

PodSecurityPolicy (PSP) is a cluster-level 
resource that controls the actions a pod can 
do or what resources it can access, and can 
be used to implement least privilege access 
for pods.

Benefits

PSP can prevent threats without impacting 
performance at runtime by enforcing least 
privilege access for pods in your clusters. 
You can enforce preventative controls such 
as disallowing running privileged containers, 
restricting resources, or limiting access to 
volumes at this level.

Approach

PodSecurityPolicy is implemented as an 
optional (but recommended) admission 
controller.

06

K
U
B
E
R
N
E
T
E
S
 
S
E
C
U
R
I
T
Y
 
C
H
E
C
K
L
I
S
T 



04
Securing the Kubernetes 
Control Plane 

STEP

What it is

The Kubernetes control plane is the brain 
of your Kubernetes cluster. It manages all 
of your cluster resources, can schedule new 
pods, and can read all of the secrets stored in 
the cluster.

Benefits

The control plane controls your cluster; 
securing it will prevent a malicious user 
from extracting information, crashing your 
infrastructure or scheduling pods with access 
to the parent node.

Approach

Isolate the cluster network, secure the API, 
and audit kubectl commands.

Control plane components communicate via 
the Kubernetes API, and kubectl instructions 
also translate into API calls. To secure it: 

 Check the kubelet config: Disable 
anonymous-auth, set a client-ca-file, 
ensure authorization-mode delegates 
to the API server, and disable the read-
only-port.

 Enable NodeRestriction in your API so 
kubelets are only allowed to perform 
modifications in their own node.

 Enable authorization via RBAC.

Kube-apiserver

kubelet

etcd kubelet

Node

Kubernetes Master

Cluster

Node

Container Runtime

Container Runtime

kube-proxy

kube-proxy

Controller
manager Scheduller kube-doc kubelet

$kubectl

07

K
U
B
E
R
N
E
T
E
S
 
S
E
C
U
R
I
T
Y
 
C
H
E
C
K
L
I
S
T 

https://sysdig.com/blog/kubernetes-security-rbac-tls/
https://sysdig.com/blog/kubernetes-security-rbac-tls/


05
Securing Workloads  
at Runtime 

STEP

What it is

Managing security risk at runtime in 
containers and Kubernetes environments. 
Runtime security detects abnormal behavior 
that could indicate a container has been 
compromised.

Benefits

Flag owners and respond quickly to newly 
discovered vulnerabilities before they are 
exploited. Detect and remediate attacks 
when they happen, before they cause 
major damage. Protect from software bugs 
or misconfigurations that cause erratic 
behavior and resource leaking.

Approach

Scan continuously so you can detect issues 
as soon as possible. Also, place automatic 
incident responses so action can occur right 
away. Finally, capture forensic data when an 
incident happens so you can investigate the 
root cause and prevent it from happening 
again. Let’s expand a bit on each of those 
strategies.

 > Runtime vulnerability reporting

After an image is initially scanned, new 
vulnerabilities may be found or your policies 
may change. You need to keep scanning your 
images to ensure that they’re secure over 
time. Some image scanners would require 
you to do a full re-scan each time, while 
others will save the metadata and will be 
able to warn you of new issues without a 
new scan. You need to be able to map critical 
vulnerabilities (e.g., CVEs with a fix available 
in images that are running longer than 30 
days) to specific applications and identify 
teams responsible to fix them. This requires 
mapping CVEs back to the Kubernetes 
asset landscape (specific namespaces, 
deployments, clusters, pods, etc.).

 > Abnormal behavior detection

Is your container doing what it’s supposed to 
do? Is it accessing files it shouldn’t? Does it have 
strange network connections? Did anyone spawn 
a terminal shell? By monitoring your container’s 
activity, you can detect abnormal behavior.

You’ll need instrumentation to detect these 
issues. Does your instrumentation cover just your 
apps, or also the system calls? The more data you 
have, the more behaviors you’ll be able to detect. 
How many resources does your instrumentation 
need? Some solutions will need a lot of memory, 
while others will tax your CPU.

Falco is the de facto Kubernetes threat detection 
engine; it detects unexpected application behavior 
and alerts on threats at runtime. Falco captures 
system calls using eBFP* (among other sources), 
which provides visibility into runtime system 
activity with Kubernetes application context, 
and also makes it ready for high performance 
production environments.

Creating rules for all of your pods can be a time 
consuming task. Having a wide library of out-of-
the-box rules available can make a difference 
here. With so many images it’s easy to miss 
something, so being able to use machine learning 
to profile expected behaviors is a nice safety net.

 > Threat detection via operational security

Log services like AWS CloudTrail can enable 
governance, compliance, operational auditing, 
and risk auditing for your cloud account. With it, 
you can log, monitor, and retain account activity 
related to actions (configuration changes, events 
created/deleted/modified) across your entire 
cloud infrastructure. The out-of-the-box set of 
Falco rules for CloudTrail, a source of truth for 
operational audit, can minimize the setup effort, 
response time, and the resources needed. For 
runtime visibility you need to implement AWS 
audit log threat detection in order to properly 
investigate security events.

08

K
U
B
E
R
N
E
T
E
S
 
S
E
C
U
R
I
T
Y
 
C
H
E
C
K
L
I
S
T 

https://falco.org/


06
Implementing 
Kubernetes Native 
Network Segmentation 

STEP

What it is

By default, Kubernetes pods are non-isolated, 
meaning they accept traffic from any source. 
Kubernetes network policies are a native 
security control of the platform that can 
be used to define how apps and services 
explicitly communicate with one another.

Benefits

Protect against threats like lateral movement 
across containers, privilege escalation, and 
data exfiltration. Your teams can also meet 
compliance requirements (NIST, PCI, etc.) that 
require network segmentation.

Approach

 Monitor all network connections made 
between apps and services running in 
Kubernetes.

 Use application context and Kubernetes 
metadata. Use native controls of 
Kubernetes network policies to 
implement least privilege policies.

 Configure Kubernetes native Network 
Policies to segment and restrict traffic 
between, to, and from pods.

 Simplify network policy management 
and integrate in your policy as code 
framework.

Spec:
 ingress:
   - from:
     - namespaceSelector:
         matchLabels:
           cache-replica: true
           app: db-cache
     ports:
     - port: 3306
     - protocol: TCP
   - from:
     - namespaceSelector:
         matchLabels:
           ns-name: database
       podSelector:
         matchLabels:
           app: watchtower
           role: watchtower-healthcheck

Network Policy

Current Kubernetes 
Cluster

Network 
Topology Map

Automatic Kubernetes
enrichment

Observed Traffic

App
1

App
2

App A
App B

App C

Desired Kubernetes 
Network Policy

App
1

App
2

Pod Selector

Ingress Egress

Ingress Rule Egress Rule

Allow Client Side
Namespace

database StatefulSet db-cache mysqld:3306

Controller by Listening process and port

Server Side

ingress flask:8080

mysqld:3306

Deployement:
traefik-cluster-ingress

ns-name-
database

DaemonSet:
watchtower

Developer

Refines network policy 
with a simple UI

DevOps

Confirms Policy 
changes and applies 

network segmentation

Autogenerated YAML 
applied via CNI

kubernetes

09

K
U
B
E
R
N
E
T
E
S
 
S
E
C
U
R
I
T
Y
 
C
H
E
C
K
L
I
S
T 



07
Automating Incident Response 
and Capturing Forensics 

STEP

What it is

When an unauthorized event occurs, you’ll 
need a full audit trail that describes what and 
when it changed, and by who. You will also 
need to know how sensitive files were modified 
and who made those changes.

Benefits

You can become operationally efficient and 
audit-ready with your container environment. 
It will also help you resolve issues quickly and 
validate compliance requirements for PCI, NIST, 
SOC2, etc.

Automatic incident response

React to incidents right away before they 
become a bigger issue. Nothing is faster than an 
automatic response. Critical incidents will require 
you to stop the affected pods, but for other 
incidents, a notification is enough. Being able to 
notify the relevant people for further investigation 
through the appropriate channels is crucial.

Auditing and forensic tools

You need to capture all of the information you 
possibly can around an incident since, by the 
time you’re going to investigate it, the containers 
may already be gone. Besides the captures, 
you’ll need a way to browse the data so you 
can correlate events and find the source of the 
issue faster. For example, you should be able to 
identify unusual network activity, correlate it to 
shell commands executed around that time, and 
see what files changed.

Audit Tap

Track every network connection to or from a 
specific process, even if the connection is not 
successful. Capture a record of all accepted / 
failed net connections to identify suspicious or 
unusual processes.

File integrity monitoring (FIM)

Gives you visibility into all of your sensitive 
file related activity. It’s used to detect 
tampering of critical system files, directories, 
and unauthorized changes, regardless of 
whether the activity is a malicious attack or an 
unplanned operational activity.

 Bake FIM checks into your image scanning 
policy.

 Create Runtime Policies to monitor for 
Filesystem Changes.

 Implement an automated response 
mechanism.

 Ensure you have comprehensive forensics 
data.

Automated response

• Notify incidents
• Pause / Kill containers

Forensics data

• What changed
• When?
• By Who?

010

K
U
B
E
R
N
E
T
E
S
 
S
E
C
U
R
I
T
Y
 
C
H
E
C
K
L
I
S
T 



08
Comparing Kubernetes Security 
Options: DIY or Turnkey

STEP

Steps to Securing  
Kubernetes

Open source  
(DIY)

(Turnkey)

Threat prevention 
with admission 
controllers

Kubernetes admission controller 
can integrate with a scanning 
engine to validate if images are 
vulnerability free.

kube-psp-advisor is a tool that 
makes it easier to create K8s Pod 
Security Policies (PSPs) from either 
a live K8s environment or from a 
single .yaml file containing a pod 
specification.

Sysdig Secure embeds scanning 
into the CI/CD pipeline. It provides 
out-of-the-box policies covering 
best security practices and 
compliance standards.

Prevents risky images from ever 
being deployed (via Kubernetes 
admission control).

You can scan directly in the 
pipeline and prevent risky images 
from going into the registry.

You get out-of-the-box 
integrations and alerts with tools 
like Slack, SNS, PagerDuty, etc.

Securing 
Kubernetes 
control plane

Validate cluster configuration 
is compliant based on CIS 
Benchmarks for Kubernetes (kube-
bench). 

K8-security-configwatch can 
review the changes in your 
Kubernetes config files, and 
highlight those that can affect the 
security of the cluster.

Use Falco to detect unexpected 
Kubernetes control plane activity.

Gain deep visibility across 
hundreds of thousands of nodes 
with out-of-the-box dashboards 
to monitor Kubernetes control 
plane activity.

Detect anomalous activity faster 
with curated Falco rules based 
on Kubernetes audit logs, with 
automatic remediation, alerting, 
and notification integrations.

Schedule continuous compliance 
assessments and generate 
reports based on CIS benchmarks 
for Kubernetes.

011

K
U
B
E
R
N
E
T
E
S
 
S
E
C
U
R
I
T
Y
 
C
H
E
C
K
L
I
S
T 

https://github.com/sysdiglabs/image-scanning-admission-controller
https://github.com/sysdiglabs/image-scanning-admission-controller
https://github.com/sysdiglabs/image-scanning-admission-controller
https://github.com/sysdiglabs/kube-psp-advisor
https://github.com/sysdiglabs/k8s-security-configwatch
https://github.com/falcosecurity/falco
https://github.com/falcosecurity/falco


Steps to Securing  
Kubernetes

Open source  
(DIY)

(Turnkey)

Securing 
workloads at 
runtime

Falco, the open source cloud-
native runtime security project, 
is the de facto Kubernetes threat 
detection engine. 

Falco detects unexpected 
application behavior and alerts on 
threats at runtime. 

Detects new vulnerabilities at 
runtime and ties the risky image 
to a specific namespace, cluster, 
deployment, pod, etc.

Save time detecting anomalous 
activity by extending Falco with 
curated out-of-the-box rules.

Improve DevOps productivity by 
using ML-based image profiling.

Gain deeper visibility into all 
network traffic across containers 
running on hybrid/multi-cloud 
environments.

Kubernetes 
native network 
segmentation 

Kubernetes Network Policies are 
a native resource that allow you 
to specify how a pod is allowed 
to communicate with various 
“entities” over the network.

Network policies are implemented 
by a network plugin like Calico.

Reduce risk with network visibility 
that enables microsegmentation 
in minutes.

Deep visibility provides guardrails 
for teams without Kubernetes 
security expertise.

Implement the right policies with 
a unified view and shared context 
across teams.

Simplify network policy 
management by automating K8s 
network policies.

Incident response 
and forensics 

Sysdig is an open source 
Linux system exploration and 
troubleshooting tool for containers.

Speed up incident response with 
comprehensive audit trails and 
deep forensics data.

Respond faster via auto-
remediation and alerting.

Validate runtime compliance 
with policies mapped to various 
compliance standards (NIST, PCI, 
SOC2).

012

K
U
B
E
R
N
E
T
E
S
 
S
E
C
U
R
I
T
Y
 
C
H
E
C
K
L
I
S
T 

https://github.com/falcosecurity/falco
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://github.com/projectcalico/calico
https://github.com/projectcalico/calico
https://github.com/draios/sysdig


KUBERNETES SECURITY 

CHECKLIST  

COPYRIGHT © 2021-2024 

SYSDIG,INC. 

ALL RIGHTS RESERVED. 

CL-004 REV. D 3/24

G E T  P E R S O N A L I Z E D  D E M O     

Secure  
Every  
Second.
Dig deeper into how Sysdig provides 
Kubernetes Security.

https://sysdig.com/request-a-demo/
https://sysdig.com/use-cases/kubernetes-security/
https://sysdig.com/use-cases/kubernetes-security/

