
The Top 5  
Best Practices  
for Image 
Scanning



02

B
R
I
E
F
:
 
T
H
E
 
T
O
P
 
5
 
B
E
S
T
 
P
R
A
C
T
I
C
E
S
 
F
O
R
 
I
M
A
G
E
 
S
C
A
N
N
I
N
G

How do you manage container  
security risk without slowing down 
application delivery?
One approach that can help address this challenge is image scanning, the process of 
analyzing the contents and build process of a container image to detect security issues, 
vulnerabilities, and bad practices. Image scanning can be embedded into a DevOps 
workflow to act as a first line of defense, detecting and blocking vulnerabilities before  
they can be exploited. 

To help make security a seamless part of your workflow, we’ve rounded up our top five best 
practices to get you started on adopting an effective container image scanning strategy.



03

B
R
I
E
F
:
 
T
H
E
 
T
O
P
 
5
 
B
E
S
T
 
P
R
A
C
T
I
C
E
S
 
F
O
R
 
I
M
A
G
E
 
S
C
A
N
N
I
N
G

your image scanning tool. These tools usually 
return a report listing the different issues 
found, assigning different severities to each 
one. You can check these image scanning 
results in your CI/CD pipeline and fail the build  
if there is any critical issue.

Keep in mind that automation is key. By 
automating security into your CI/CD pipelines, 
you can catch vulnerabilities before they 
enter your registry, so issues never reach 
production.

01
Bake image 
scanning into your 
CI/CD pipeline 
When building container images, you should 
always scan them before publishing.

You can add an extra step for image scanning 
to the CI/CD pipeline you’re already building 
for your DevOps workflows.

The basics of image scanning on a CI/CD 
pipeline are as follows: After your code is 
tested and built, you can push images to a 
staging repository instead of pushing them to 
the production repository. Then, you can run 

Code CI/CD Staging Repository Prod RepositoryImage Scanning

Pass

Security Policies

WarnFail



04

B
R
I
E
F
:
 
T
H
E
 
T
O
P
 
5
 
B
E
S
T
 
P
R
A
C
T
I
C
E
S
 
F
O
R
 
I
M
A
G
E
 
S
C
A
N
N
I
N
G

02
Adopt inline 
scanning to keep 
control of your 
privacy
Traditionally, image scanning in a CI/CD 
pipeline involves a staging repository. But 
what if your image contains some credentials 
by mistake? Those credentials could reach the 
wrong hands and end up being leaked.

Going a step further, you can implement inline 
image scanning, which scans your images 

directly from your CI/CD pipeline without 
needing a staging repository.

Only the scan metadata is sent to your 
scanning tool, helping you keep control  
of your privacy.

Code CI/CD Prod RepositoryImage Scanning

Pass

Security Policies

WarnFail



05

B
R
I
E
F
:
 
T
H
E
 
T
O
P
 
5
 
B
E
S
T
 
P
R
A
C
T
I
C
E
S
 
F
O
R
 
I
M
A
G
E
 
S
C
A
N
N
I
N
G

 03
Regularly scan 
images in your 
container registry
By regularly scanning the images in a 
container registry, you can identify new 
vulnerabilities that affect previously scanned 
images.

Since you will be pulling images from your 
registries, it’s important that you scan them 
so that you can identify any security risks that 
may arise after an image has already been 
checked into a registry.

CI/CD Private Repository

Public Repository

Image Scanning Cluster



06

B
R
I
E
F
:
 
T
H
E
 
T
O
P
 
5
 
B
E
S
T
 
P
R
A
C
T
I
C
E
S
 
F
O
R
 
I
M
A
G
E
 
S
C
A
N
N
I
N
G

 04
Scan for OS 
vulnerabilities
In general, the lighter the image, the better. 
A lighter image means faster builds, faster 
scans, and fewer dependencies with potential 
vulnerabilities.

New Docker images are usually built off of 
an existing base image. This base image is 
defined by the FROM statement in the image 
Dockerfile. The result is a layered architecture 
design that saves a lot of time in the most 
common tasks. For example, when it comes to 
image scanning, you only need to scan a base 
image once. If a parent image is vulnerable, 
any other images built on top of that one will 
be vulnerable too.

Even if you didn’t introduce a new vulnerability 
in your image, it will be susceptible to those in 
the base image.

That’s why your scanning tool should actively 
track vulnerability feeds for known vulnerable 
images and notify you if you’re using an 
affected image.

Wordpress: 5.4.2 PHP: 7.4

Apache: 2.2

Ubuntu: focal



07

B
R
I
E
F
:
 
T
H
E
 
T
O
P
 
5
 
B
E
S
T
 
P
R
A
C
T
I
C
E
S
 
F
O
R
 
I
M
A
G
E
 
S
C
A
N
N
I
N
G

 05
Scan for 
vulnerabilities in 
third-party libraries
Applications use a lot of libraries — so many 
that libraries end up adding more lines of code 
than the actual code your team writes. This 
means you need to be aware of vulnerabilities 
not only in your own code, but also in all of its 
dependencies.

Luckily, those vulnerabilities are well 
tracked in the same vulnerability feeds that 
your scanner uses to warn you about OS 
vulnerabilities. Not all tools go as deep as to 
scan the libraries in your images, so make sure 
your image scanner digs deep enough and 
warns you about these vulnerabilities.



BRIEF

COPYRIGHT © 2025  

SYSDIG,INC. 

ALL RIGHTS RESERVED. 

PB-041 REV. A 2/25

B
R
I
E
F
:
 
T
H
E
 
T
O
P
 
5
 
B
E
S
T
 
P
R
A
C
T
I
C
E
S
 
F
O
R
 
I
M
A
G
E
 
S
C
A
N
N
I
N
G

Image scanning is the first line of defense in 
a secure DevOps workflow. Following image 
scanning best practices will help you detect 
issues before they have a chance to become  
a real problem — all without slowing you down.

Want to learn more? Check out our ebook 
Securing the Cloud: A Guide to Effective 
Vulnerability Management:

D O W N L O A D  N O W

https://sysdig.com/content/c/pf-securing-the-cloud?x=u_WFRi
https://sysdig.com/content/c/pf-securing-the-cloud?x=u_WFRi
https://sysdig.com/content/c/pf-securing-the-cloud?x=u_WFRi

